Arbres

Structuration en arbre
Terminologie, définitions, notations
Représentation des arbres
Parcours d'arbres
Manipulation d'arbres

- Arbres n-aires
- Arbres binaires

Arbres n-aires

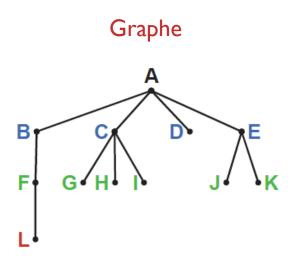
- Exemples d'arbres n-aires de la vie courante
 - Sommaire d'un livre :
 - Ensemble de titres (chapitres, sous-chapitres, paragraphes, etc.)
 - Arborescence de fichiers
 - Ensemble de noms (dossiers, fichiers)
 - Classification
 - Noms de classes, sous-classes
 - Expression arithmétique
 - Ensemble d'opérateurs et d'opérandes
 - Arbre de tâches (cf cours d'IHM)
 - Ensemble des tâches possibles par un logiciel interactif
 - Arbre de décision
 - Ensemble de questions

Définition d'un Arbre

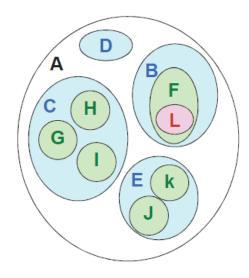
- Un Arbre est un ensemble non vide structuré comme suit :
 - un des éléments est désigné comme étant la « racine » de l'arbre
 - il existe une partition sur les éléments restants, et chaque classe de cette partition est elle-même un arbre : on parle des sousarbres de la racine.
- Si le nombre de sous-arbres est variable, l'arbre est dit n-aire.
- L'ensemble représenté par un arbre est la réunion d'un élément (la racine) et des sous-arbres qui lui sont directement associés.
- Chaque élément de l'ensemble structuré en arbre est appelé un nœud. À tout nœud est associée une information élémentaire.
- Pour décrire les relations entre les nœuds on utilise la terminologie de la généalogie, un nœud est donc le père de ses fils.
- Le degré d'un nœud est le nombre de ses fils. On distingue :
 - les nœuds non terminaux de degré non nul
 - les nœuds terminaux ou feuilles, de degré nul.

Arbres n-aires

- Pour structurer un ensemble non vide en arbre
 - Choisir un élément
 - Répartir les éléments restants en sous-ensembles disjoints et les structurer en arbres
- Exemples de représentations



Ensembles



Autres exemples de représentation

Indentation

```
B
    G
```

Ecriture préfixée

(racine puis les sous-arbres)

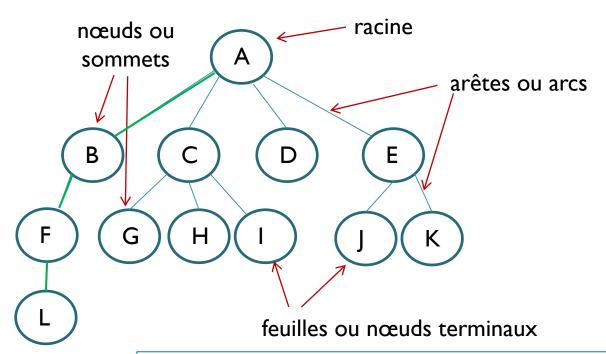
(A (B (F (L))) (C (G) (H) (I)) (D) (E (J) (K)))

Ecriture postfixée

(les sous-arbres puis la racine)

((((L) F) B) ((G) (H) (I) C) (D) ((J) (K) E) A)

Terminologie (graphes)



Chemin de A à L

Définitions

Feuille: nœud terminal, n'a pas de fils.

Longueur d'un chemin : nombre de nœuds sur le chemin.

Niveau d'un nœud : longueur du chemin de la racine au nœud

niveau de la racine : 1

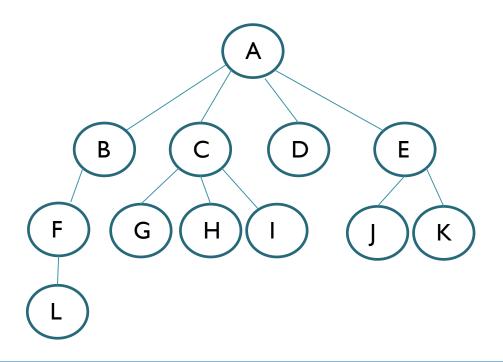
∘ niveau d'un nœud : 1 + niveau du nœud père

Profondeur d'un arbre : niveau maximum de l'arbre

Largeur d'un arbre : nombre maximum de nœuds d'un même niveau

Degré d'un nœud : nombre des ses fils lean-Michel Adam - Université Grenoble Alpes

Terminologie (relations père-fils)



- A est la racine de l'arbre
- E est le père de J, J est le fils de E
- G, H et I sont frères
- F et L forment la descendance de B
- F, B et A forment l'ascendance de L
- F, H et E sont des descendants de A

Arbres n-aires

- La structure d'arbre représente un ordre partiel sur les nœuds.
- Deux nœuds sont en relation s'ils font partie de la même arborescence.
- Si de plus il existe un ordre entre les fils, on dit que l'arbre est ordonné.
- Un arbre n-aire est composé d'une racine et d'une forêt de sous-arbres.
- Une forêt est une séquence d'arbres (éventuellement vide)

Représentation informatique d'un arbre n-aire

Un arbre n-aire est représenté de manière chainée. Chaque nœud de l'arbre est représenté par un triplet :

- un champ correspondant à la valeur du nœud
- un champ pointe sur la liste des fils, plus précisément sur le fils aîné
- un champ pointe sur la liste des frères, plus précisément sur le frère cadet

Valeur du nœud	Liste des fils (fils aîné)	Liste des frères (cadets)
el	fils Jean-Michel	frère Adam - Université Greno

Représentation informatique d'un arbre n-aire

Nœud : type agrégat

el: <u>Elément</u> // valeur

fils: Arbre // tête de la liste des fils

frère : Arbre // frère cadet

fagrégat

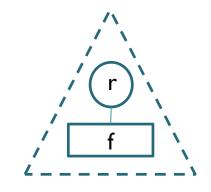
Arbre : type pointeur de Nœud

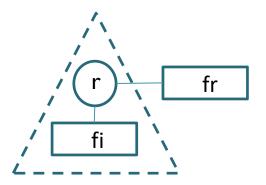
r: Arbre // arbre de racine r

Exemple fils frère el В Н G fils frère el

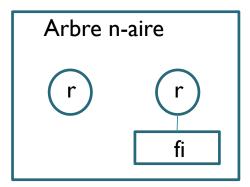
Principe d'analyse

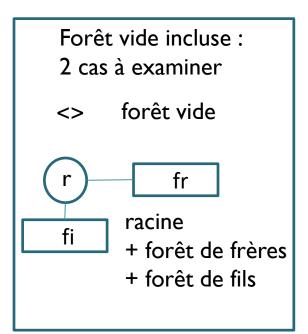
- Un arbre n-aire est formé
 - de sa racine r
 - de la forêt de sous-arbres f (éventuellement vide)
- Une forêt est une séquence d'arbres formée
 - d'un premier arbre a
 - d'une forêt f
- Une forêt non vide est formée
 - d'un premier arbre de racine r
 - d'une forêt de sous-arbres fils fi
 - d'une forêt d'arbres frères fr
- Traiter un arbre n-aire :
 - Traiter la racine r
 - Traiter les forêts de sous-arbres fi et fr
- Traiter une forêt
 - Algorithme de parcours séquentiel : on énumère une séquence d'arbres éventuellement vide (récursif ou itératif)

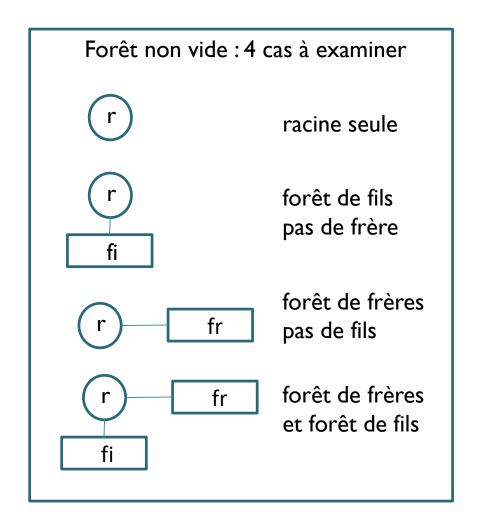




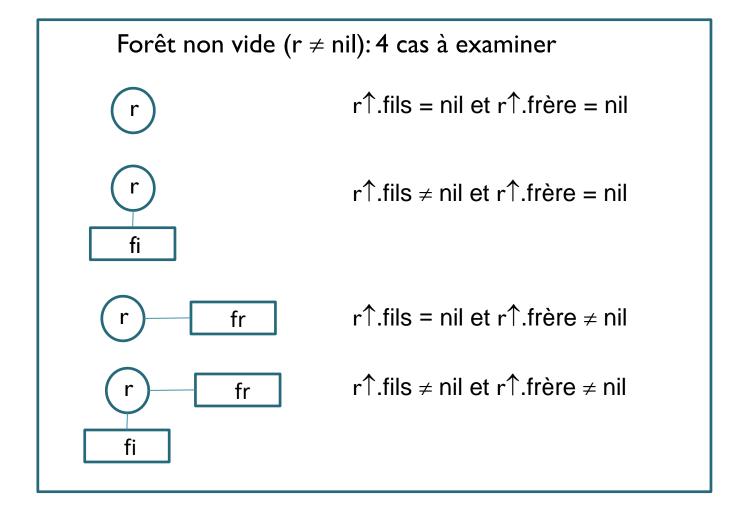
Modèles d'analyse







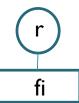
Modèles d'analyse



Modèles d'analyse

Arbre n-aire non vide

 r^{\uparrow} .fils = nil et r^{\uparrow} .frère = nil



 r^{\uparrow} .fils \neq nil et r^{\uparrow} .frère = nil

Forêt éventuellement vide : 2 cas à examiner

r = nil

r ≠ nil

Exemple

 Calcul du nombre de nœuds d'un arbre n-aire

Nombre de nœuds d'un arbre n-aire

Solution 1 : arbre non vide, parcours de la forêt des fils

```
nbn_A : \underline{fonction} (r : Arbre) \rightarrow entier > 0
// nbn_A(r) renvoie nombre de nœuds de l'arbre de racine r, r \neq nil
<u>lexique</u>
   // paramètre r : Arbre racine de l'arbre
   n : entier > 0 // résultat à calculer
   ac : Arbre // sous-arbre courant
algorithme
   n \leftarrow 1 // traitement de la racine
   // traitement de la forêt des sous-arbres : itération de parcours
   ac \leftarrow r \uparrow .fils
   tantque ac ≠ nil faire
          n \leftarrow n + nbn_A(ac)
          ac ← ac<sup>↑</sup>.frère
   ftq
   renvoyer(n)
```

Nombre de nœuds d'un arbre n-aire

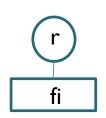
Solution 2: Parcours d'une forêt

```
nbn_f : \underline{fonction} (f : Arbre) \rightarrow entier \ge 0
// nbn_f(f) renvoie nombre de nœuds de la forêt f (éventuellement vide)
lexique
   // paramètre: f : Arbre forêt
algorithme
   \underline{si} f = nil alors renvoyer(0)
   <u>sinon</u> renvoyer(1+nbn_f(f^{\uparrow}.fils) + nbn_f(f^{\uparrow}.frère))
   fsi
nbn_A : \underline{fonction} (r : Arbre) \rightarrow entier > 0
// nbn_A(r) renvoie nombre de nœuds de l'arbre de racine r, r \neq nil
<u>Algorithme</u>
 renvoyer(1+nbn_f(r↑.fils))
```

Fonctions facilitant l'écriture des algorithmes et faisant abstraction de la représentation de l'arbre n-aire

```
fils(r) → Arbre r\uparrow.fils
frère(r) → Arbre r\uparrow.frère
existeFils(r) → booléen r\uparrow.fils ≠ nil
existeFrère(r) → booléen r\uparrow.frère ≠ nil
```

Traitement séquentiel d'un arbre n-aire



- Parcourir un arbre n-aire consiste à traiter sa racine et la liste de ses sousarbres.
- On peut décider de traiter d'abord la racine, puis les sous-arbres : parcours préfixé (pré-ordre)
- Ou de traiter d'abord les sous-arbres puis la racine :
 - parcours postfixé (post-ordre)

Parcours préfixé d'un arbre n-aire non vide

```
action parcoursPréfixé (a : Arbre)
// applique « traiter » à tous les nœuds de a
lexique
   // paramètre a : Arbre arbre à parcourir
   ac: Arbre // sous-arbre courant
algorithme
  traiter(a<sup>↑</sup>.el)
  ac \leftarrow a^{\uparrow}.fils
  tantque ac ≠ nil faire
                                      \equiv parcoursPréfixéForêt(a\uparrow.fils)
        parcoursPréfixé(ac)
        ac ← ac<sup>↑</sup>.frère
   ftq
```

Parcours préfixé d'une forêt

```
action parcoursPréfixéForêt (f : Arbre)
// applique « traiter » à tous les nœuds de la forêt f
lexique
  // paramètre f : Arbre forêt à parcourir
algorithme
  si f ≠ nil
  alors
      traiter(f1.el)
      parcoursPréfixéForêt(f1.fils)
      parcoursPréfixéForêt(f<sup>1</sup>.frère)
   fsi
```

Parcours postfixé Il suffit de changer la place de traiter

```
action parcoursPostfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a

lexique

// paramètre a : Arbre arbre à parcourir

ac : Arbre // sous-arbre courant

algorithme

ac ← a↑.fils

tantque ac ≠ nil faire

parcoursPostfixé(ac)

ac ← ac↑.frère

ftq

traiter(a↑.el)
```

```
action parcoursPostfixéForêt (f : Arbre)

// applique « traiter » à tous les nœuds de f

lexique

// paramètre : f : Arbre forêt à parcourir

algorithme

si f ≠ nil

alors

parcoursPostfixéForêt(f↑.fils)

traiter(f↑.el)

parcoursPostfixéForêt(f↑.frère)

fsi
```

```
action parcoursPostfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (version récursive
lexique

// paramètre : a : Arbre arbre à parcourir
action utilisée : parcoursPostfixéForêt
algorithme
parcoursPostfixéForêt(a↑.fils)
traiter(a↑.el)
```

Recherche dans un arbre n-aire non vide (préfixé)

```
<u>fonction</u> recherchePréfixé (a : Arbre) → Arbre
// renvoie l'adresse du premier élément vérifiant P dans l'ordre préfixé
<u>lexique</u>
  // paramètre : a : Arbre arbre à parcourir
 ac: Arbre // sous-arbre courant
 x : Arbre // premier nœud vérifiant P
<u>algorithme</u>
   si P(a^{\uparrow}.el) alors x \leftarrow a
   sinon
      ac \leftarrow a\uparrow.fils ; x \leftarrow nil
      tantque ac \neq nil et x = nil faire
        x ← recherchePréfixé(ac)
        ac ← ac<sup>↑</sup>.frère
      ftq
   fsi
   renvoyer(x)
```

Recherche dans une forêt (préfixé)

```
<u>fonction</u> recherchePréfixéF(f : Arbre) → Arbre
// renvoie l'adresse du premier élément de f vérifiant P
// dans l'ordre préfixé
lexique
 // paramètre : f : Arbre forêt à parcourir
 x: Arbre // premier nœud vérifiant P
algorithme
   <u>si</u> f = nil <u>oualors</u> P(f↑.el)
   alors x \leftarrow f
   \underline{sinon} x ← recherchePréfixéF(f\uparrow.fils)
           <u>si</u> x = nil \underline{alors} x \leftarrow recherchePréfixéF(f^\.frère)
           fsi
   fsi
   renvoyer(x)
```

Recherche dans une forêt (postfixé)

```
<u>fonction</u> recherchePostfixéF(f : Arbre) → Arbre
// renvoie l'adresse du premier élément de f vérifiant P
// dans l'ordre postfixé
<u>lexique</u>
  // paramètre : f : Arbre forêt à parcourir
                 // premier nœud vérifiant P
 x : Arbre
algorithme
   \underline{si} f = nil
   alors x \leftarrow nil
   \underline{sinon} x ← recherchePostfixéF(f^{\uparrow}.fils)
           si x = nil
           alors si P(f↑.el)
                    alors x \leftarrow f
                    \underline{sinon} x ← recherchePostfixéF(f<sup>↑</sup>.frère)
                    fsi
           fsi
    fsi
   renvoyer(x)
```

Exercice

 Ecrire une fonction qui calcule le nombre de nœuds de niveau n

```
solution 1 : nbnNivA: \underline{fonction}(a:Arbre, n:entier>0) \rightarrow entier \geq 0 // nombre de nœuds de niveau n dans l'arbre non vide a solution 2 : nbnNivF:\underline{fonction}(f:Arbre, n:entier>0) \rightarrow entier \geq 0
```

// nombre de nœuds de niveau n dans la forêt f

Nombre de nœuds de niveau n (arbre n-aire non vide)

```
<u>fonction</u> nbnNivA : <u>fonction</u>(a : Arbre, n: entier > 0) → entier ≥ 0 // nombre de nœuds de niveau n dans l'arbre non vide a
 lexique
  // paramètre : a : Arbre arbre à parcourir
  // paramètre : n : entier > 0 niveau
  nb : entier ≥ 0 // valeur calculée : nombre de nœuds de niv. N
  ac: Arbre // sous-arbre courant
 <u>algorithme</u>
    si n = 1 alors nb \leftarrow 1
    sinon ac \leftarrow f\uparrow.fils; nb \leftarrow 0
            tantque ac ≠ nil faire
                 nb \leftarrow nb + nbnNivA (ac, n-1)
                 ac ← ac<sup>↑</sup>.frère
             ftq
     fsi
     renvoyer(nb)
```

Nombre de nœuds de niveau n (forêt)

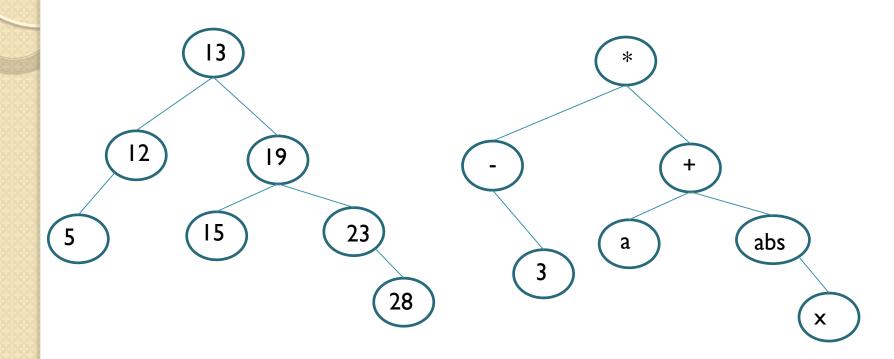
```
<u>fonction</u> nbnNivF : <u>fonction</u>(f : Arbre, n: entier > 0) → entier \geq 0
// nombre de nœuds de niveau n dans la forêt f
 <u>lexique</u>
   // paramètre : f : Arbre forêt à parcourir
 // paramètre n : entier > 0 : niveau
<u>Algorithme</u>
  \underline{si} f = nil \underline{alors} renvoyer(0)
  <u>sinon</u>
     <u>si</u> n = 1 <u>alors</u> renvoyer(1 + nbnNivF(f↑.frère, n))
     <u>sinon</u> renvoyer (nbnNivF(f↑.fils, n-1) + nbnNivF(f↑.frère, n)
     <u>fsi</u>
  fsi
```

Arbres binaires

Arbres binaires

- Un arbre binaire est un arbre ordonné pour lequel tout nœud a au plus deux fils.
- Un arbre binaire est un ensemble fini qui est soit vide, soit composé d'une racine et de deux sous-arbres binaires appelés sous-arbre gauche et sous-arbre droit.
- On peut donc dire qu'un arbre binaire est :
 - soit l'arbre vide
 - soit un nœud qui a exactement deux sousarbres éventuellement vides

Exemples d'arbres binaires



Représentation informatique d'un arbre binaire

Un arbre binaire est représenté de manière chaînée. Chaque nœud de l'arbre est représenté par un triplet :

- un champ correspondant à la valeur du nœud
- un champ pointe sur le sous-arbre gauche, plus précisément sur le fils gauche
- un champ pointe sur le sous-arbre droit, plus précisément sur le fils droit

Valeur du nœud	Sous-arbre gauche	Sous-arbre droit
el	g Jean-Michel	d Adam - Université Grenobl

Représentation informatique d'un arbre binaire

Nœud : type agrégat

el : Elément // valeur

g: Arbre // sous-arbre gauche

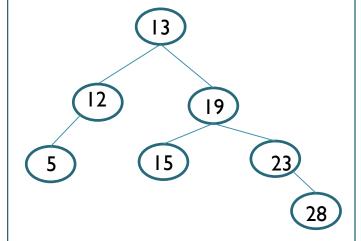
d: Arbre // sous-arbre droit

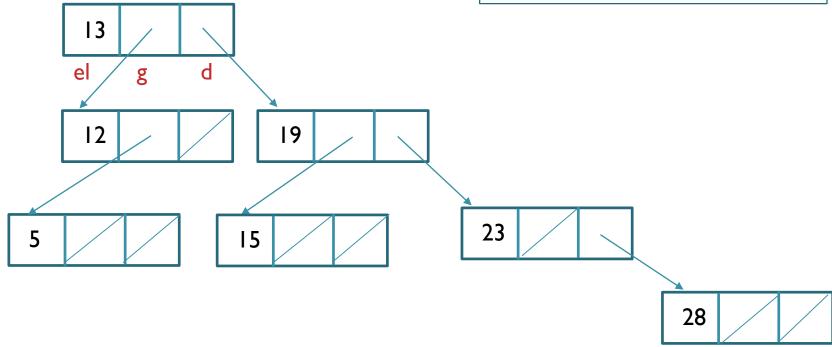
fagrégat

Arbre : type pointeur de Nœud

r: Arbre // arbre binaire de racine r

Exemple

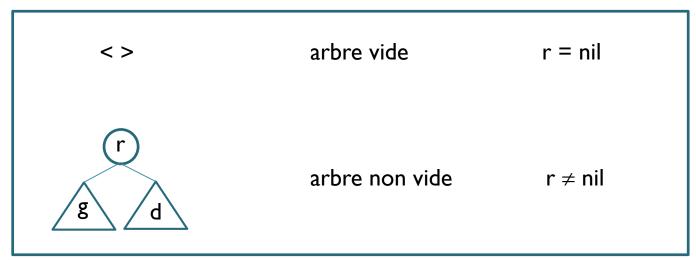




Principes d'analyse

- Comme pour les arbres n-aires il existe deux formes d'analyse
 - Soit on considère l'arbre vide comme cas de base, et le cas général est un nœud racine avec 2 sousarbres éventuellement vides

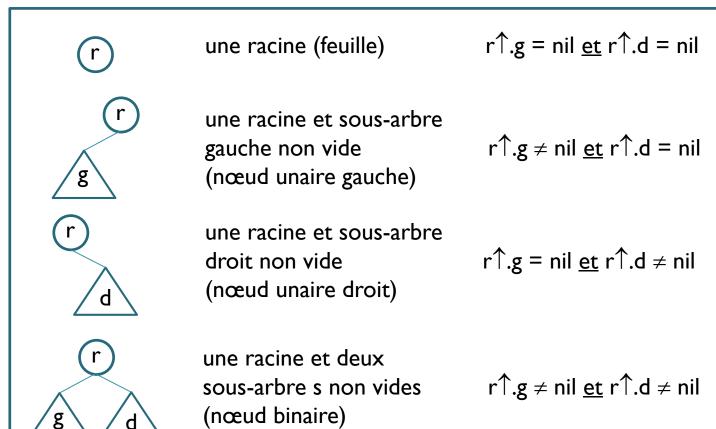
Modèle 1



Principes d'analyse

 Soit on considère un arbre non vide, dans ce cas nous avons en général 4 cas à examiner

Modèle 2



Exemple : nombre de valeurs positives dans un arbre binaire

Solution 1 : arbre éventuellement vide

```
nbPos : <u>fonction</u> (r : Arbre) \rightarrow entier \geq 0
// nbp(r) renvoie nombre de nœuds de l'arbre de racine r ayant une valeur > 0
<u>lexique</u>
 // paramètre r : Arbre racine de l'arbre
<u>Algorithme</u>
 si r = nil
 <u>alors</u> renvoyer(0)
 sinon
           <u>si</u> r.el > 0 <u>alors</u> renvoyer(1+ nbPos(r\uparrow.g) + nbPos(r\uparrow.d)
                        sinon renvoyer(nbPos(r^{\uparrow}.g) + nbPos(r^{\uparrow}.d))
           <u>fsi</u>
 <u>fsi</u>
```

Exemple : nombre de valeurs positives dans un arbre binaire

Solution 2 : arbre non vide

```
nbPos : fonction (r : Arbre) \rightarrow entier > 0
// nbp(r) renvoie nombre de nœuds de l'arbre de racine r ayant une valeur > 0
// r ≠ nil
lexique
   // paramètre : r : Arbre racine de l'arbre examiné
   nb : entier > 0 // nombre de valeurs positives trouvées
Algorithme
  \underline{si} r↑.el > 0 \underline{alors} nb \leftarrow 1 \underline{sinon} nb \leftarrow 0 \underline{fsi}
  selon r↑
   r \uparrow .g = nil et r \uparrow .d = nil : // action vide
    r \uparrow g \neq nil \underline{et} r \uparrow d = nil : nb \leftarrow nb + nbPos(r \uparrow g)
    r \uparrow .g = nil \underline{et} r \uparrow .d \neq nil : nb \leftarrow nb + nbPos(r \uparrow .d)
    r \uparrow g \neq nil \underline{et} r \uparrow d \neq nil : nb \leftarrow nb + nbPos(r \uparrow g) + nbPos(r \uparrow d)
  fselon
  renvoyer(nb)
```

Exemple : nombre de valeurs positives dans un arbre binaire

Solution 2bis: arbre non vide

```
nbPos : \underline{\text{fonction}} (r : Arbre) \rightarrow entier > 0 

// nbp(r) renvoie nombre de nœuds de l'arbre de racine r ayant une valeur > 0 

// r \neq nil 

\underline{\text{lexique}} 

// paramètre : r : Arbre racine de l'arbre examiné 

nb : entier > 0  // nombre de valeurs positives trouvées 

\underline{\text{Algorithme}} 

\underline{\text{si}} r\underliel el > 0  \underline{\text{alors}} nb \leftarrow 1  \underline{\text{sinon}} nb \leftarrow 0  \underline{\text{fsi}} 

\underline{\text{si}} r\underliel .g \neq nil \underline{\text{alors}} nb \leftarrow nb + nbPos(r\underliel .g) \underline{\text{fsi}} 

\underline{\text{si}} r\underliel .d \neq nil \underline{\text{alors}} nb \leftarrow nb + nbPos(r\underliel .d) \underline{\text{fsi}} 

renvoyer(nb)
```

Nombre d'appels récursifs engendrés ?

- Pour un arbre binaire de N nœuds
- Modèle 1
 - 2N appels
- Modèle 2
 - N-1 appels
- Nombre de sous-arbres : 2N
 - non vides : N-1
 - vides: N+1

Propriétés sur les arbres binaires

- Se démontrent par récurrence :
 - Base : on vérifie que la propriété est vraie pour l'arbre feuille
 - H.R.: on suppose la propriété vraie pour les sous-arbres
 - On démontre que la propriété est vraie pour l'arbre
- Exemple

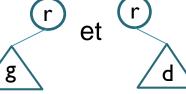
Un arbre binaire est composé de N nœuds :

- B nœuds binaires
- U nœuds unaires
- F feuilles

Démontrer que : B = F-1, $\forall N > 0$

Propriétés sur les arbres binaires

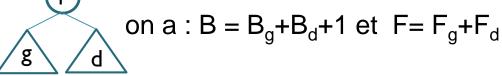
- Démontrons que B = F-1, ∀ N > 0
- Base : si r est une feuille, F = 1 et B = 0 vérifié
- H.R.: la propriété est vraie pour les sous-arbres g et d
 - Pour les cas



propriété vérifiée car

$$B = B_g$$
; $F = F_g$ $B = B_d$ $F = F_d$

Pour le cas



par H.R. on a :
$$B_g = F_g - 1$$
 et $B_d = F_d - 1$

$$B = F_g-1 + F_d-1 + 1 = F_g+F_d-1 = F-1 \Rightarrow v\acute{e}rifi\acute{e}$$

Démonstration directe

Démonstration directe de B = F-1

$$N = F + U + B \qquad (1)$$

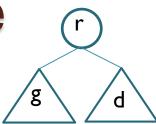
- Nombre de nœuds fils :
 - N -1 (car on ne compte pas la racine)
 - Mais ce sont aussi tous les fils des nœuds unaires et tous les fils des nœuds binaires, soit au total : U+2B
 - Donc N 1 = U + 2B (2)
- Soustraction des égalités (1) (2) :

$$1 = F - B \Rightarrow B = F-1$$

Fonctions facilitant l'écriture des algorithmes et faisant abstraction de la représentation de l'arbre binaire

 $\begin{array}{lll} gauche(r) \rightarrow Arbre & r^{\uparrow}.gauche \\ droit(r) \rightarrow Arbre & r^{\uparrow}.droit \\ existeG(r) \rightarrow booléen & r^{\uparrow}.g \neq nil \\ existeD(r) \rightarrow booléen & r^{\uparrow}.d \neq nil \\ feuille(r) \rightarrow booléen & r^{\uparrow}.g = nil et r^{\uparrow}.d = nil \\ estVide(r) \rightarrow booléen & r = nil \end{array}$

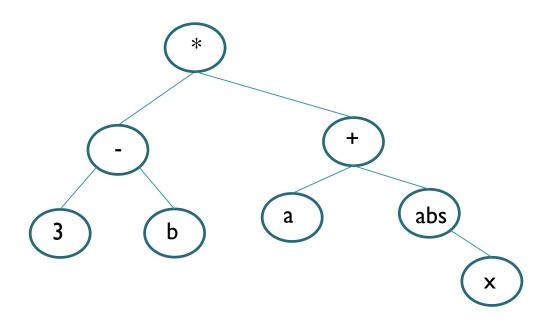
Parcours d'arbre binaire



3 parcours possibles:

- Préfixé (ou préordre):
 - racine, sous-arbre gauche, sous-arbre droit
- Infixé (ou ordre symétrique) :
 - sous-arbre gauche, racine, sous-arbre droit
- Postfixé (ou ordre terminal) :
 - sous-arbre gauche, sous-arbre droit, racine

Parcours d'arbre binaire



- Préfixé :
- Infixé :
- Postfixé :

- * 3 b + a abs x
- 3 b * a + abs x
- 3 b a x abs + *

Parcours préfixé d'un arbre binaire

```
action parcoursPréfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (non vide)

lexique

// paramètre a : Arbre arbre à parcourir

algorithme

traiter(a↑.el)

si a↑.g ≠ nil alors parcoursPréfixé(a↑.g) fsi

si a↑.d ≠ nil alors parcoursPréfixé(a↑.d) fsi
```

```
action parcoursPréfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (peut être vide)

lexique

// paramètre a : Arbre : arbre à parcourir

algorithme

si a ≠ nil alors

traiter(a↑.el)

parcoursPréfixé(a↑.g)

parcoursPréfixé(a↑.d)

fsi
```

Parcours infixé d'un arbre binaire

```
action parcoursInfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (non vide)

lexique

// paramètre a : Arbre arbre à parcourir

algorithme

si a↑.g ≠ nil alors parcoursInfixé(a↑.g) fsi

traiter(a↑.el)

si a↑.d ≠ nil alors parcoursInfixé(a↑.d) fsi
```

```
action parcoursInffixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (peut être vide)

lexique

// paramètre a : Arbre : arbre à parcourir

algorithme

si a ≠ nil alors

parcoursInfixé(a↑.g)

traiter(a↑.el)

parcoursInfixé(a↑.d)

fsi
```

Parcours postfixé d'un arbre binaire

```
action parcoursPostfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (non vide)

lexique

// paramètre a : Arbre arbre à parcourir

algorithme

si a↑.g ≠ nil alors parcoursPostfixé(a↑.g) fsi

si a↑.d ≠ nil alors parcoursPostfixé(a↑.d) fsi

traiter(a↑.el)
```

```
action parcoursPostfixé (a : Arbre)

// applique « traiter » à tous les nœuds de a (peut être vide)

lexique

// paramètre a : Arbre : arbre à parcourir

algorithme

si a ≠ nil alors

parcoursPostfixé(a↑.g)

parcoursPostfixé(a↑.d)

traiter(a↑.el)

fsi
```

Exercice

- On considère un arbre binaire dont les nœuds portent des valeurs entières
- Ecrire une fonction qui calcule la somme des valeurs des nœuds d'un tel arbre

Somme des éléments d'un arbre

Egalité de deux arbres binaires

```
<u>fonction</u> egauxAB : <u>fonction</u>(a : Arbre, b : Arbre) → booléen // egauxAB(a,b) renvoie vrai si a et b ont même structure
// et mêmes valeurs
 <u>lexique</u> de egauxAB
  // paramètre a,b : Arbre : arbres binaires à comparer
 algorithme de egauxAB
 selon a,b
 a = nil et b = nil : renvoyer(vrai)
 a = nil et b \neq nil : renvoyer(faux)
 a \neq nil et b = nil : renvoyer(faux)
 a \neq nil et b \neq nil : renvoyer(a \uparrow .el = b \uparrow .el
                                    etpuis egauxAB(a1.g,b1.g)
                                    etpuis egauxAB(a1.d,b1.d)
 fselon
```

Recopie d'un arbre binaire

```
<u>action</u> recopie(<u>consulté</u> a : Arbre, <u>élaboré</u> b : Arbre) 
// effet: construit l'arbre b, copie de a
 Lexique de recopie
  // paramètre a : Arbre
                                   : arbre binaire à copier
  // paramètre b : Arbre : copie de a
 Algorithme de recopie
 si a = nil alors b \leftarrow nil
 sinon
   créer(b);
   b↑.el \leftarrow a↑.el
   recopie(a↑.g, b↑.g)
   recopie(a\u221.d, b\u221.d)
 fsi
```

Construction d'une liste chainée correspondant au parcours en ordre symétrique (infixé) d'un arbre binaire

Lexique partagé

Cellule : type agrégat el : Elément ; suc : AdrCel fagrégat

AdrCel : type pointeur de Cellule

Nœud: type agrégat el : Elément ; g : Arbre ; d : Arbre fagrégat

Arbre : type pointeur de Nœud

```
<u>action creerListeSym(consulté</u> a : Arbre ; <u>élaboré</u> t : AdrCel) 
// Effet: Construit la liste chaînée t des éléments de l'arbre 
// binaire a, parcouru en ordre symétrique
```

<u>Idée</u>: construction de la liste par des ajouts systématiques en tête de liste => Parcours en ordre symétrique inversé

Construction d'une liste chainée correspondant au parcours en ordre symétrique d'un arbre binaire

```
action_creerListeSym(consulté a : Arbre ; modifié t : AdrCel)
// Effet: Construit la liste chaînée t des éléments de l'arbre
// binaire a, parcouru en ordre symétrique
Lexique
 k : AdrCel // adresse de la cellule créée
Algorithme
si a ≠ nil alors
  creerListeSym(a↑.d, t)
  créer(k); // on place la valeur de la racine en tête de la liste t
  k\uparrow.el \leftarrow a\uparrow.el; k\uparrow.suc \leftarrow t; t \leftarrow k
  creerListeSym(a1.g, t)
fsi
Pour construire la liste de tête t1 à partir de l'arbre a1,
```

Appel: t1 ← nil; creerListeSym(a1,t1)

Recherche dans un arbre binaire (préfixé)

```
fonction rechercheP (a: Arbre) → booléen
// renvoie vrai si a comporte un élément vérifiant P
<u>lexique</u>
 // paramètre a : Arbre : arbre à parcourir
algorithme
  selon a
    a = nil : renvoyer(faux)
    a ≠ nil : renvoyer( P(a<sup>↑</sup>.el) <u>oualors</u> rechercheP(a<sup>↑</sup>.g)
                                   oualors rechercheP(a1.d))
  fselon
```

Recherche dans un arbre binaire (préfixé)

```
fonction recherchePréfixé (a : Arbre) → Arbre
// renvoie l'adresse du premier élément vérifiant P dans l'ordre préfixé
<u>lexique</u>
 // paramètre a : Arbre : arbre à parcourir
 x : Arbre // adresse premier nœud vérifiant P
<u>algorithme</u>
si a = nil alors x \leftarrow nil
sinon
   \underline{si} P(a↑.el) \underline{alors} x \leftarrow a
   sinon
         x ← recherchePréfixé(a1.g)
         <u>si</u> x = nil <u>alors</u> x \leftarrow recherchePréfixé(a\uparrow.d) <u>fsi</u>
    <u>fsi</u>
fsi
renvoyer(x)
```

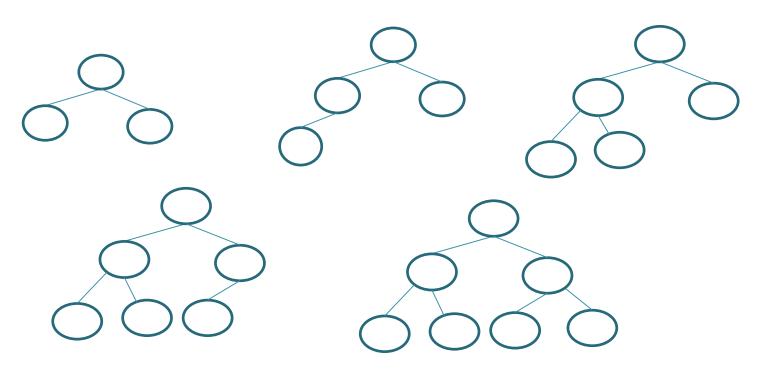
Exercice

- Ecrire les algorithmes de recherche d'un nœud dans un arbre binaire vérifiant P
 - dans l'ordre infixé
 - dans l'ordre postfixé

Arbres binaires complets

Arbre binaire complet

- Cas particulier important des arbres binaires
- Arbre binaire dont toutes les feuilles sont au niveau p ou p-1 (p = profondeur)
- Arbre « plein » et « tassé à gauche »

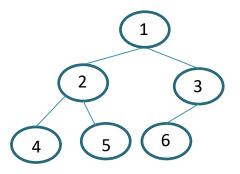


Arbre binaire complet

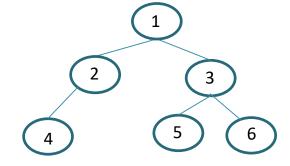
- Pour définir un arbre binaire complet, on considère les deux numérotations de nœuds suivantes:
 - 1. Numérotation par niveau de gauche à droite, la racine a le numéro 1 : num_niveau(racine) = 1
 - 2. La numérotation définie par récurrence comme suit:
 - Base : numéro(racine) = 1
 - Récurrence : numéro(gauche(a)) = numéro(a)*2 numéro(droite(a)) = numéro(a)*2+1
- Un arbre binaire est complet si et seulement si les deux numérotations associent les mêmes numéros aux nœuds de l'arbre :

Pour tout nœud n de l'arbre on a : num_niveau(n) = numéro(n)

Arbre binaire complet



Arbre binaire complet



Arbre binaire pas complet

Représentation contigue d'un arbre binaire complet

Séquence des n nœuds : mémorisée par niveau dans un tableau de taille n

12

Т

32 19

4

3

22

5

2

6

T: tableau sur [1..n] d'Élément

Racine en position 1

X en position i

Gauche(X) en position i*2

Droit(X) en position i*2+1

Père(X) en position i div 2

Correspondance Arbre /Tableau

a : Arbre a : entier sur 1..n

a[↑].el **T[a]**

a=nil a>n

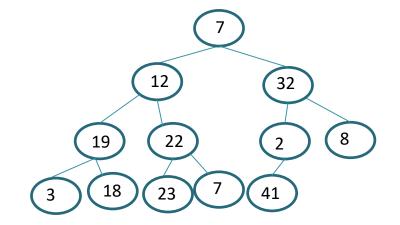
a[↑].g **a*2**

a[↑].d **a*2+1**

 a^{\uparrow} .g ≠ nil 2*a ≤ n

 $a^{\uparrow}.d \neq nil$ 2*a+1 ≤ n

feuille(a) a*2 > n



3

8

18

9

23

10

11

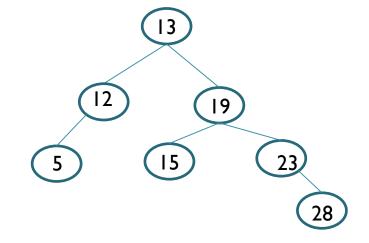
41

12

Algorithmes **itératifs** de parcours d'arbres binaires

Algorithmes **itératifs** de parcours d'arbres binaires

- Parcours en profondeur
 - préfixé, infixé, postfixé
- Parcours en largeur
 - Parcours par niveau



- Préfixé: 13,12,5,19,15,23,28
- Infixé: 5,12,13,15,19,23,28
- Postfixé: 5,12,15,28,23,19,13
- Largeur: 13,12,19,5,15,23,28

Algorithmes **itératifs** de parcours d'arbres binaires

Principes

- Utilisation d'une structure de données d auxiliaire contenant des nœuds
- Deux primitives associées à d
 - ajouter (n, d)
 - extraire (n, d)
- Choix de d
 - Parcours en profondeur : d est une pile
 - Parcours par niveau : d est une file

La classe Pile

Classe Pile

```
t : tableau sur [1..n] d' Élément // pile de taille n
s : entier sur 0..n // indice de l'élément en sommet de pile
// Méthodes publiques:
public action créerPile (consulté n :entier > 0)
// creation d'une Pile vide de taille n (constructeur)
<u>public</u> sommet : <u>fonction</u> → Élément
// renvoie l'élément au sommet de la pile
public empiler : action (consulté e : Élément)
// place e au sommet de la pile
<u>public</u> dépiler : <u>action</u> (<u>élaboré</u> e : Élément)
// supprime l'élément en sommet de la pile et le place dans e
<u>public</u> décapiter : <u>action</u>
// supprime l'élément au sommet de la pile
<u>public</u> pileVide : <u>fonction</u> → booléen
// renvoie vrai si la pile est vide
public viderPile : action
// vide la pile
```

La classe File

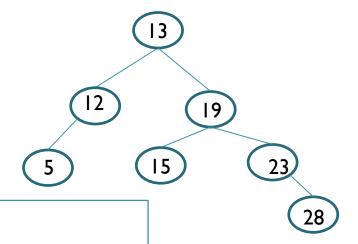
// vide la file

Classe File t : tableau sur [0..n-1] d' Élément // file de taille n (table circulaire) p : entier sur 0..n-1 // indice du premier élément et de la file d : entier sur 0..n-1 // indice du dernier élément et de la file // Méthodes publiques: <u>public</u> <u>action</u> creerFile (consulté n :entier > 0) // creation d'une file vide de taille n (constructeur) <u>public</u> premier : <u>fonction</u> → Élément // renvoie la valeur du premier élément de la file <u>public</u> dernier : <u>fonction</u> → Élément // renvoie la valeur du dernier élément de la file <u>public</u> enfiler : <u>action</u> (<u>consulté</u> e : Élément) // place e en queue de la file public défiler: action (elaboré e : Élément) // supprime le premier élément de la file et le place dans e public fileVide : fonction → booléen // renvoie vrai si la file est vide public viderFile : action

Parcours itératif d'arbre binaire Schéma de parcours en ordre Préfixé

```
<u>lexique</u>
              // pile d'Arbres (pointeurs de nœuds)
p : Pile
n: entier > 0 // taille de la pile
a : Arbre // racine de l'arbre à parcourir en ordre préfixé
nc : Arbre // adresse du nœud courant
algorithme
p.créerPile(n)
p.empiler(a)
initialisationTraitement
répéter
  p.dépiler(nc) ; traiter(nc)
  si existeD(nc) alors p.empiler(droit(nc)) fsi
  si existeG(nc) alors p.empiler(gauche(nc)) fsi
jusqu'à p.pileVide
terminaisonTraitement
```

Parcours itératif en ordre Préfixé



algorithme

p.créerPile(n)
p.empiler(a)

initialisationTraitement

<u>répéter</u>

p.dépiler(nc) ; Traiter(nc)

si existeD(nc) alors
p.empiler(droit(nc))

<u>fsi</u>

<u>si</u> existeG(nc) <u>alors</u>

p.empiler(gauche(nc))

<u>fsi</u>

jusqu'à p.pileVide

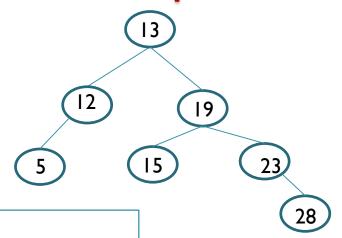
Terminaison Traitement

Traitement	Pile
	@13
13	@12 @19
12	@5 @19
5	@19
19	@15 @23
15	@23
23	@28
28	

Parcours itératif d'arbre binaire Schéma de parcours par niveau

```
lexique
f : File
              // file d'Arbres (pointeurs de nœuds)
n: entier > 0 // taille de la file
a : Arbre // racine de l'arbre à parcourir en ordre préfixé
nc : Arbre // adresse du nœud courant
algorithme
f.créerFile(n) // file vide de taille n créée
f.enfiler(a)
initialisationTraitement
répéter
  d.défiler(nc) ; Traiter(nc)
  si existeG(nc) alors f.enfiler(gauche(nc)) fsi
  si existeD(nc) alors f.enfiler(droit(nc)) fsi
<u>jusqu'à</u> f.fileVide
terminaisonTraitement
```

Parcours itératif par niveau



algorithme

```
f.créerFile(n) // file vide de taille n
f.enfiler(a)
```

initialisationTraitement

<u>répéter</u>

d.extraire(nc) ; Traiter(nc)

si existeG(nc) alors

f.enfiler(gauche(nc))

<u>fsi</u>

<u>si</u> existeD(nc) <u>alors</u>

f.enfiler(droit(nc))

<u>fsi</u>

<u>jusqu'à</u> f.fileVide

Terminaison Traitement

Traitement	File
	@13
13	@12 @19
12	@19 @5
19	@5 @15 @23
5	@15 @23
15	@23
23	@28
28	

Parcours itératif d'arbre binaire

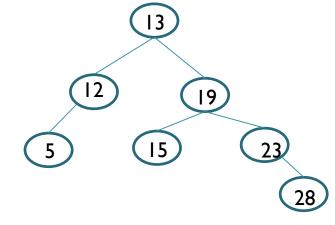
- Parcours en ordre infixé et postfixé
- On a besoin de marquer les nœuds qui ont été traités
- Chaque nœud doit donc avoir un champ supplémentaire (booléen) indiquant s'il est marqué ou non.
- Pour gérer ce marquage, nous disposons des primitives suivantes :
 - <u>fonction</u> estMarqué(a : <u>Arbre</u>) → booléen
 // renvoie vrai si la racine de a est marquée
 - <u>action</u> marquer(<u>consulté</u> a : <u>Arbre</u>)
 // marque le nœud racine de a

Parcours itératif d'arbre binaire Schéma de parcours en ordre infixé

```
lexique
```

```
p : Pile // pile d'Arbres (pointeurs de nœuds)
 n : entier > 0 // taille de la pile
 a : Arbre // racine de l'arbre à parcourir en ordre préfixé
 nc : Arbre // adresse du nœud courant
algorithme
 p.créerPile(n)
 p.empiler(a)
 initialisationTraitement
 répéter
   nc ← p.sommet // on ne dépile pas
   <u>si</u> existeG(nc) <u>etpuis</u> <u>non</u> estMarqué(gauche(nc)) <u>alors</u> p.empiler(gauche(nc))
   sinon
      traiter(nc); marquer(nc);
      p.décapiter
      <u>si</u> existeD(nc) <u>alors</u> p.empiler(droit(nc)) <u>fsi</u>
   fsi
 jusqu'à p.pileVide
 terminaisonTraitement
```

Parcours itératif en ordre Infixé



<u>algorithme</u>	5	(
p.créerPile(n)		
p.empiler(a)		
initialisationTraitement		
<u>répéter</u>		
nc ← p.sommet		
<u>si</u> existeG(nc) <u>etpuis</u> <u>non</u> estMarqı	ué(gauche(n	(c))
<pre>alors p.empiler(gauche(nc))</pre>		
<u>sinon</u>		
traiter(nc); marquer(nc);		
p.décapiter		
<u>si</u> existeD(nc) <u>alors</u> p.empiler(dro	it(nc)) <u>fsi</u>	
<u>fsi</u>		
<u>jusqu'à</u> p.pileVide		
terminaisonTraitement		

Traitement	Pile
	@13
	@12 @13
	@5 @12 @13
5	@12 @13
12	@13
13	@19
	@15 @19
15	@19
19	@23
23	@28
28	

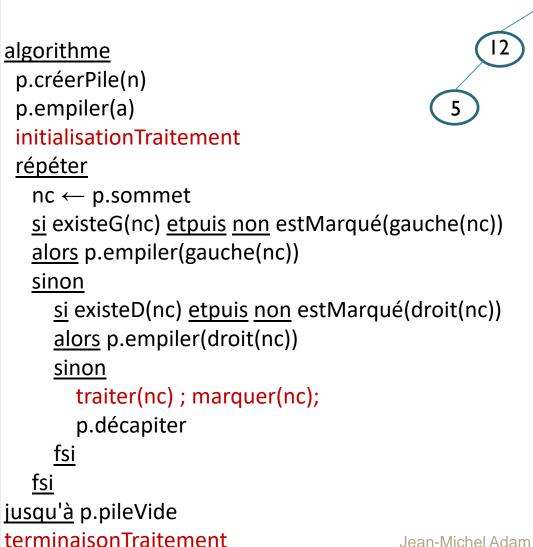
Parcours itératif d'arbre binaire

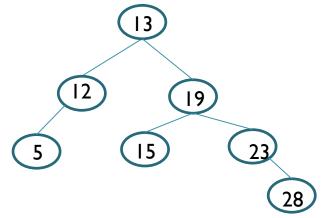
Schéma de parcours en ordre postfixé

```
lexique
```

```
// pile d'Arbres (pointeurs de nœuds)
 n : entier > 0 // taille de la pile
 a : Arbre // racine de l'arbre à parcourir en ordre préfixé
 nc : Arbre // adresse du nœud courant
algorithme
 p.créerPile(n)
 p.empiler(a)
 initialisationTraitement
 <u>répéter</u>
   nc ← p.sommet // on ne dépile pas
   <u>si</u> existeG(nc) <u>etpuis</u> <u>non</u> estMarqué(gauche(nc)) <u>alors</u> p.empiler(gauche(nc))
   sinon
     si existeD(nc) etpuis non estMarqué(droit(nc)) alors p.empiler(droit(nc))
      sinon
        traiter(nc); marquer(nc);
        p.décapiter
     fsi
   fsi
jusqu'à p.pileVide
terminaisonTraitement
```

Parcours itératif en ordre Postfixé





zaucho(nc))	Traitement	Pile
gauche(nc))		@13
		@12 @13
		@5 @12 @13
é(droit(nc))	5	@12 @13
	12	@13
		@19 @13
		@15 @19 @13
	15	@19 @13
		@23 @19 @13
		@28 @23 @19 @13
	28	@23 @19 @13
	23	@19 @13
	19	@13
Jean-Michel Adam -	13 Université Greno	ble Alpes 78

Parcours itératif d'arbre n-aire

Préfixé

Initialiser le traitement p.viderPile p.empiler(racine) répéter p.dépiler(nc); traiter(nc) empiler tous les fils de nc jusqu'à p.pileVide

```
Par niveau Initialiser le traitement f.viderfile f.enfiler(racine) \frac{\text{répéter}}{\text{f.défiler(nc)}}; traiter(nc) \text{fc} \leftarrow \text{fils(nc)} \frac{\text{tantque}}{\text{f.enfiler(fc)}}; fc \leftarrow frère(fc) \frac{\text{ftq}}{\text{jusqu'à}} f.fileVide
```

Postfixé

```
Initialiser le traitement
p.viderPile
p.empiler(racine)
<u>répéter</u>
 nc \leftarrow p.sommet
 si nc a un fils non marqué
 alors
   p.empiler(fils non marqué)
 sinon
   traiter(nc); marquer(nc)
   p.decapiter
 fsi
jusqu'à p.pileVide
```

Parcours préfixé d'arbre n-aire

```
p.viderPile
p.empiler(racine)
initialiser le traitement
répéter
 p.dépiler(nc); traiter(nc)
 // empiler tous les fils de nc dans leur ordre inverse
 // => utilisation d'une seconde pile p2
 fc \leftarrow fils(nc); p2.viderPile
 tantque fc ≠ nil faire
   p2.empiler(fc); fc \leftarrow frère(fc)
 ftq
 // dernier frère en sommet de la pile p2
 tantque non p2.pileVide faire
   p2.dépiler(fc); p.empiler(fc)
 ftq
jusqu'à p.pileVide
```

Parcours postfixé d'arbre n-aire

```
Initialiser le traitement
p.viderPile
p.empiler(racine)
<u>répéter</u>
 nc \leftarrow p.sommet
 fc \leftarrow fils(nc)
 tantque fc ≠ nil etpuis estMarqué(fc) faire
    fc ← frère(fc)
 ftq // fc = nil oualors non estMarqué(fc)
 si fc \neq nil
 alors
   p.empiler(fc)
  sinon
   traiter(nc); marquer(nc)
    p.decapiter
  tsi.
jusqu'à p.pileVide
```

