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FUNDAMENTAL CONCEPTS

When we are self-indulgent and uncritical, when we confuse hopes and
facts, we slide into pseudoscience and superstition.

—Carl Sagan (1996, p. 27)

This chapter prepares readers for learning about alternatives to statisti-
cal tests through survey of fundamental concepts about research designs,
variables, and estimation. Also reviewed are characteristics of statistical
tests in general and those of three of the most widely used tests in comparative
studies, the t test and F test for means and the chi-square (%2) test for two-
way contingency tables. We will see in the next chapter that there are
many misunderstandings about statistical tests, so readers should pay close
attention to the discussions that follow. Exercises with answers for this
chapter are available on this book's Web site.

TERMS AND IDEAS ABOUT COMPARATIVE STUDIES

Essential ideas about study design and the nature of independent or
dependent variables are reviewed in this section. It is hoped that this
presentation will build a common vocabulary for later chapters.

Independent Samples Designs and Correlated Designs

An independent variable (factor) has at least two levels. In an
independent samples (between-subjects) design, each level is studied with an
unrelated sample (group), and every case is measured once on the dependent
(outcome) variable. If cases are randomly assigned to samples, the factor
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is a manipulated or experimental variable and the design is a randomized-
groups or completely randomized design. If cases are classified into groups based
on an intrinsic characteristic such as gender, the factor is a nonexperimental or
individual'difference variable. Studies in which all factors are individual-
difference variables are referred to as nonexperimental, correlational, or
observational studies.

The samples are related in a dependent-samples or correlated design.
There are two kinds. In a repeated-measures or within-subjects design, each
case is measured at every level of the factor, such as pretest and posttest.
This means that the "samples" are actually identical across the levels of the
factor. R. Rosenthal, Rosnow, and Rubin (2000) distinguished between
intrinsically and nonintrinsically repeated-measures designs. The logic of the
former requires multiple assessments of each case, such as when maturational
change is studied in individuals. The rationale of a nonintrinsically repeated-
measures design does not require multiple testing of each case because the
same factor could theoretically be studied with independent samples. For
instance, the effect of caffeine versus no caffeine on athletic performance
could be studied with unrelated groups in a completely randomized design
or with just one group in a repeated-measures design. In the second kind
of correlated design, a matched-groups design, a separate group corresponds
to each level of the factor, just as in between-subjects designs. The difference
is that each case in a matched-groups design is explicitly paired with a case
in every other sample on at least one matching variable, which controls
for this variable.

Compared to designs with independent samples, correlated designs
may reduce error variance and increase statistical power. For these reasons,
a correlated design may be chosen over an independent samples design even
though the research question does not require dependent samples. These
advantages have potential costs, though. Repeated-measures designs may
require controls for order effects, and matched-groups designs are subject
to regression effects if cases come from the extremes of their respective
populations. See Ellis (1999) for a clear discussion of these and other design
issues when studying dependent samples.

Balanced and Unbalanced Designs

An independent samples design is balanced if the number of cases
in each group (n) is the same. If any two groups are of different size, the
design is unbalanced. With no missing data, correlated designs are inherently
balanced. Although there is no general statistical requirement for balanced
designs, there are some potential drawbacks to unbalanced designs. One
is loss of statistical power even if the total number of cases is the same
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for a balanced versus an unbalanced design. Suppose that nt = r\i = 50
for a balanced two-group design. R. Rosenthal et al. (pp. 30-32) showed
that the relative loss of power for an unbalanced design where n\ = 70
and n2 = 30 is equivalent to losing 16 cases (16% of the sample size) from
the balanced design. The relative power loss increases as the group size
disparity increases.

A critical issue concerns the reason why the group sizes are unequal.
For example, an unbalanced design may arise because of randomly missing
data from a design intended as balanced, such as when equipment fails and
scores are not recorded. A handful of missing observations is probably of
no great concern, such as if HI = 100 and T\I = 97 as a result of three
randomly missing scores. A more serious problem occurs when unbalanced
designs are a result of nonrandomly missing data, such as when higher
proportions of participants drop out of the study under one condition than
another. Nonrandomly missing observations in this instance may cause a
bias: Study participants who withdrew may differ systematically from those
who remain, and the results may not generalize to the intended population.
Unfortunately, there is no simple statistical "fix" for bias because of nonran-
domly missing data. About all that can be done is to understand the nature
of the data loss and how it affects the results; see West (2001) for more
information.

Sometimes unbalanced designs are intentional—that is, based on a
specific sampling plan. Standardization samples of contemporary ability tests
are often stratified by demographic or other variables to match recent census
data about the population of the United States. Because sizes of groups
based on demographic variables such as gender or age are not usually equal
in the population, samples so stratified may be unbalanced. Unequal group
sizes in this case is actually an asset because it helps to ensure the representa-
tiveness of the sample in terms of relative group sizes. There are also times
when groups with relatively low population base rates are intentionally
oversampled. This is a common practice in research with special populations.
Suppose that the base rate of clinical depression in the general population
is 5%. In a particular study, a group of n\ = 50 depressed patients is compared
with n.2 = 50 control cases. This design is balanced, which maximizes the
power of the group contrast. However, the base rate of depression in the
sample is 10 times higher than in the population. Because sample base rates
affect statistical tests and some types of effect size estimates, the results may
not generalize if the population base rates are very different.

Schultz and Grimes (2002) made the point that equal group sizes are
not always an asset even in randomized trials. Specifically, they show that
forcing equal group sizes through restricted forms of random assignment,
such as permuted-blocks randomization, may introduce bias compared to
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simple randomization, which does not guarantee equal group sizes. Thus,
whether unequal group size is a problem depends on the research context.

Multiple Independent or Dependent Variables

Studies with just one independent variable are called singk'factor or
one'way designs. However, many behaviors studied by social scientists are
affected by more than one variable. One of the goals of a multifactor design
is to model this complexity by including two or more factors in the design.
The terms higher order, factorial, or blocking design, among others, describe
various kinds of multifactor designs. Blocking designs involve partitioning
the total sample into groups based on an individual-difference variable (e.g.,
age) believed to affect outcome. If cases within each block are randomly
assigned to levels of a manipulated factor, the resulting two-way design is
a randomized-blocks design. Effect size estimation in single-factor designs is
covered in chapters 4 through 6, and chapter 7 deals with this topic for
multifactor designs.

Regardless of the number of factors, comparative studies with just one
dependent variable are univariate designs. Many common statistical tests
such as the t and F tests for means are generally univariate tests. Multivariate
designs have at least two dependent variables, which allows measurement
of outcome in more than one area. This book deals only with univariate
designs. Because entire volumes are devoted to the basics of multivariate
methods (e.g., Grimm & Yarnold, 1995, 2000), it is beyond the scope of
this book to deal with them in detail. Also, multivariate analyses often wind
up as a series of univariate analyses conducted with individual outcomes. This
book's Web site has a supplemental chapter about multivariate effect size
estimation in designs with independent samples and fixed factors.

Fixed-Effects and Random-Effects Factors

This distinction affects how the results are to be generalized and how
effect size magnitude should be estimated. It is introduced by example:
Suppose that the independent variable is dosage of a drug. There are theoreti-
cally an infinite number of dosages. If, say, five different dosages are randomly
selected for study, the drug factor is a random-effects factor. Selecting dosages
at random may give a representative sample from all possible levels. If so,
the results of the study may generalize to the whole population of dosages.
However, if the particular dosages for study are selected by some other
means, the drug factor is probably a fixed-effects factor. For instance, a
researcher may intentionally select five different dosages that form an equal-
interval scale, such as 0 (control), 3, 6, 9, and 12 mg • kg"1. Because these
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dosages are not randomly selected, the results may not generalize to other
dosages not included in the original study, such as 15 mg • kg"1.

Qualitative factors are usually treated as fixed factors. This is especially
true for individual-difference variables such as gender where all possible
levels may be included in the study. Quantitative variables can be analyzed
as either fixed or random factors. A control /actor is a special kind of random
factor that is not of interest in itself but is included for the sake of generality
(Keppel, 1991). Suppose that participants are required to learn a list of
words. If only a single word list is used, it is possible that the results are
specific to the particular words on that list. Using several different lists
matched on characteristics such as relative word frequency and treating
word list as a random factor may enhance generalizability. Repeated-measures
factors that involve trials or measurement at specific times, such as three
and six months after treatment, are usually considered fixed. If there are
many repeated measures and only some are randomly selected for analysis,
the repeated-measures factor is considered random.

Designs with random factors may require special considerations in
statistical testing and effect size estimation. Thus, it may be better to consider
a factor as fixed instead of random if in doubt. Chapters 6 and 7 deal with
designs in which there is at least one random factor. Please note that
the subjects factor is almost always seen as random because its levels—the
individual cases—are usually different from study to study.

Covariate Analyses

Both correlated and blocking designs may reduce error variance com-
pared to independent samples and one-way designs, respectively. Another
way is covariate analysis. A covariate is a variable that predicts outcome but
is ideally unrelated to the independent variable. The variance explained by
the covariate is removed, which reduces error variance. Suppose a basic
math skills pretest is given to students before they are randomly assigned
to different instructional conditions for introductory statistics. Outcome is
measured with a common final examination. It is likely that the pretest will
covary with exam scores. In an analysis of covariance (ANCOVA), the
effect of the pretest is statistically removed from the outcome variable. With
enough reduction in error variance, the power of the test of instructional
condition may be increased. Because ANCOVA is a statistical method, it
can be incorporated into any of the designs mentioned earlier. However,
ANCOVA is usually appropriate only for randomly assigned groups, and it
is critical to meet the statistical assumptions of this method. These points
are elaborated in chapter 6 when effect size estimation in covariate analyses
is discussed.
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SAMPLING AND ESTIMATION

Basic issues in sampling and estimation are reviewed next, including
types of samples, statistics as estimators of population parameters, and inter-
val estimation (i.e., the construction of confidence intervals based on sam-
ple statistics).

Types of Samples

One of the hallmarks of behavioral research is the distinction between
populations and samples. It is rare that whole populations are studied. If
the population is large, vast resources may be needed to study it. For example,
the budget for the 2000 census of the population of the United States was
about $4.5 billion, and almost a million temporary workers were hired for
the endeavor (U.S. Census Bureau, 2002). It may be practically impossible
to study even much smaller populations. For example, the base rate of autism
is about 4 in 10,000 children (.04%). If autistic children are dispersed over
a large geographic area or live in remote regions, studying all of them may
be impracticable.

Behavioral scientists must usually make do with small subsets of popula-
tions or samples. There are three general kinds of samples: random, system-
atic, and ad hoc. Random samples are selected by a chance-based method
that gives all observations an equal probability of appearing in the sample,
which may yield a representative sample. Observations in systematic samples
are selected using some orderly sampling plan that may yield a representative
sample, but this is not guaranteed. Suppose that an alphabetical list of every
household is available for some area. A random number between 10 and
20 is generated and turns out to be 17. Every 17th household from the list
is contacted for an interview, which yields a 6% (1/17) sample in that area.

Most samples in social science research are neither random nor system-
atic but rather ad hoc samples, also called samples of convenience, locally
available samples, or accidental samples. All of these terms imply the study
of samples that happen to be available. A group of undergraduate students
in a particular class who volunteer as research participants is an example
of a convenience sample. There are two problems with such samples. First,
they are probably not representative. For instance, it is known that volunteers
differ systematically from nonvolunteers. Second, distributional theories that
underlie statistical tests generally assume random sampling. If the data
are from ad hoc samples, there is a conceptual mismatch with the test's
distributional theory. This is a criticism of statistical tests among others
considered in the next chapter.

Despite the potential problems of ad hoc samples, it is often difficult
or impossible to collect random or even systematic samples. True random
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sampling requires a list of all observations in the population, but such lists
rarely exist. Also, the notion of random or systematic sampling does not
apply to animal research: Samples in this area are almost never randomly
selected from known populations of animals. Perhaps the best way to mitigate
the influence of bias in ad hoc samples is to follow what is now a fairly
standard practice: Measure a posteriori a variety of sample characteristics
and report them along with the rest of the results, which allows readers of
the study to compare its sample with those of other studies in the same
area. Another option is to compare the sample demographic profile with
that of the population (if such a profile exists) to show that the sample is
not obviously unrepresentative.

Sample Statistics as Estimators

Values of population parameters, such as means (|i), variances (a2), or
correlations (p), are usually unknown. They are instead estimated with
sample statistics, such as M (means), s2 (variances), orr (correlations). These
statistics are subject to sampling error, which refers to the difference between
an estimator and the corresponding population value. These differences
arise because the values of statistics from random samples tend to vary
around that of the population parameter. Some of these statistics will be
too high and others too low (i.e., they over- or underestimate the population
parameter), and only a relatively small number will exactly equal the popula-
tion value. This variability among estimators from different samples is a
statistical phenomenon akin to background (natural) radiation: It's always
there, sometimes more or less, fluctuating randomly from sample to sample.
The amount of sampling error is generally affected by the variability of
population observations, how the samples are selected, and their size. If the
population is heterogenous (e.g., O is large), values of sample statistics may
also be quite variable. Obviously, values of estimators from biased samples
may differ substantially from that of the corresponding parameter. Given
reasonably representative sampling and constant variability among popula-
tion observations, sampling error varies inversely with sample size. This
implies that statistics in larger samples tend to be closer on average to the
population parameter than in smaller samples. This property describes the
law of large numbers, and it says that one is more likely to get more accurate
estimates from larger samples than smaller samples.

Sample statistics are either biased or unbiased estimators of the corres-
ponding population parameter. The sample mean is an unbiased estimator
because its average (expected) value across all possible random samples
equals the population mean. The sample variance—also called a mean
square—is an unbiased estimator of population variance if computed as the
ratio of the sum of squares over the degrees of freedom, or
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df N-l '

where X is an individual score. In contrast, a sample variance derived as
S2 = SS IN is a negatively biased estimator because its values are on average
less than a2. All references to sample variances that follow assume Equation
2.1 unless otherwise indicated. Expected values of statistics that are positively
biased estimators generally exceed that of the corresponding parameter.

There are ways to correct some statistics for bias. For example, although
s2 is an unbiased estimator of a2, the sample standard deviation s is a
negatively biased estimator of o. However, multiplication of s by the correc-
tion factor in parentheses that follows

yields the statistic d, which is a numerical approximation to the unbiased
estimator of c. Because the value of the correction factor in Equation 2.2
is larger than 1.00, d > s. There is also greater correction for negative bias
in smaller samples than in larger samples. If N = 5, for instance, the unbiased
estimate of <J is

d = {1 + l/[4 (5 - 1)]} 5 = (1.0625)s

but for N = 50, the unbiased estimate is

0 = {1 + l/[4 (50- 1)]}S = (1.005l)s

which shows relatively less adjustment for bias in the larger sample. In even
larger samples, the value of the correction factor in the previous equation
is essentially 1.00; that is, there is practically no adjustment for bias. This
is another instance of the law of large numbers: Averages of even-biased
statistics from large samples tend to closely estimate the corresponding
parameter.

Point and Interval Estimation

Sample statistics are used for two types of estimation. Point estimation
is when the value of a sample statistic (e.g., M) is taken as the sole estimate
of a parameter (e.g., (J,). Because of sampling error, however, it is quite
unlikely that the two will be equal. Interval estimation recognizes this reality
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by constructing a confidence interval about a point estimate. A confidence
interval reflects the amount of sampling error associated with that estimate
within a specified level of uncertainty. A confidence interval can also be
seen as a range of plausible values for the corresponding parameter. In
graphical displays, confidence intervals may be represented as error bars
around a single point. Carl Sagan (1996) called error bars "a quiet but
insistent reminder that no knowledge is complete or perfect" (pp. 27-28).
Wider reporting of confidence intervals is also part of suggested reform of
statistical practice in the social sciences (see chapter 1).

We need a more precise definition of a confidence interval. The follow-
ing is based on Steiger and Fouladi (1997, pp. 229-230):

1. A 1 — (X confidence interval for (on) a parameter is a pair
of statistics yielding an interval that, over repeated samples,
includes the parameter with probability 1 - (X. (The symbol
oc is the level of statistical significance.)

2. A 100 (1 - oc)% confidence interval for a parameter is a pair
of statistics yielding an interval that, over repeated samples,
includes the parameter 100 (1 - Ct)% of the time.

The value of 1 - a is selected by the researcher to reflect the degree
of statistical uncertainty. The lower bound of a confidence interval is the
lower confidence limit, and the upper bound is the upper confidence limit.
Because the most common levels of statistical significance in NHST are
oc = .05 or (X = .01, one usually sees in the literature either 95% or 99%
confidence intervals. However, it is possible to construct confidence intervals
that correspond to other levels of statistical significance. For example, error
bars around points that represent means in graphs are sometimes each one
standard error wide, which corresponds roughly to a = .32 and a 68%
confidence level.

In traditional confidence intervals—those based on central test statis-
tics (defined next)—the sample statistic is usually exactly between the lower
and upper bounds. That is, the width of the interval is symmetrical around
the estimator. The phrase "a confidence interval about" an estimator is
sometimes used to describe a symmetrical confidence interval. However,
this phrase neglects to mention the population parameter that the interval
is intended to approximate. It is also the case that the estimator does not
always fall at the very center of other kinds of confidence intervals, such
as those based on noncentral test statistics (also defined next).

The traditional way to construct a confidence interval is by adding
and subtracting from a statistic the product of its standard error and the
two-tailed critical value at the (X level of statistical significance in a relevant
central test distribution, such as t. A standard error is the standard deviation
of the sampling distribution of an estimator. The square of the standard
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error is the conditional variance, the variance of the sampling distribution.
A sampling distribution is a probability distribution based on random samples
all of size N. In general, standard errors vary directly with variability among
population observations and inversely with sample size. The latter explains
part of the law of large numbers: Distributions of statistics from larger samples
are generally narrower than distributions of the same statistic from smaller
samples. A central test distribution assumes that the null hypothesis is true.
Central test distributions are used in null hypothesis significance testing
(NHST) to determine the critical values of test statistics. Tables of critical
values for distributions such as t, F, and %2 found in many introductory
statistics textbooks are based on central test distributions.

Standard errors of statistics with simple sampling distributions can be
estimated with formulas that have appeared in statistical textbooks for some
time. By a "simple" distribution it is meant that (a) the statistic estimates
only a single population parameter, and (b) both the shape and variance
of its sampling distribution are constant regardless of the value of the
parameter. Distributions of means and mean differences are simple as just
defined, and traditional confidence intervals for them are discussed next.

Confidence Intervals for fJi

The standard error in a distribution of random means is

(2.3)

Because the population variance a2 is not generally known, this standard
error is usually estimated as

This estimate is subject to sampling error because the variance s2 is a sample
statistic. The relevant test statistic for means when O is unknown is central
t, so the general form of a confidence interval for |l based on a single
observed mean is

M ± 5 M [ t 2 . t a U , a ( N - l ) ] (2.5)

where the term in brackets is the positive two-tailed critical value in a
central t distribution with N - 1 degrees of freedom at the a level of
statistical significance. Suppose we find in a sample of 25 cases that M =
100.00 and s = 9.00. The standard error is
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SM = 9.00/251/2 = 1.80

and t2.taii, .05 (24) = 2.064- The 95% confidence interval for (J, is thus

100.00 ± 1.80 (2.064)

or 100.00 ± 3.72, which defines the interval 96.28-103.72. The 99% confi-
dence interval for (l is constructed the same way except t2.taiii .01 (24) = 2.797:

100.00 + 1.80 (2.797)

or 100 ± 5.03, which defines the interval 94.97-105.03. The 99% confidence
interval is wider than the 95% confidence interval based on the same statistic
because a greater margin of error is allowed.

Let us consider now the correct interpretation of the 95% confidence
interval for (0, derived earlier, 96.28-103.72:

1. This interval defines a range of outcomes that should be consid-
ered equivalent to the observed result (M = 100.00) given the
amount of expected sampling error at the 95% confidence level.

2. It also provides a reasonable estimate of the population mean.
That is, |A could be as low as 96.28 or it could be as high as
104.72, again at the 95% confidence level.

3. Of course, there is no guarantee that p. is actually included
in the confidence interval. We could construct the 95% confi-
dence interval around the mean in another sample, but the
center or endpoints of this new interval will probably be
different compared with the original. This is because confi-
dence intervals are subject to sampling error, too.

4. However, if 95% confidence intervals are constructed around
the means of all random samples drawn from the same popula-
tion, then 95/100 of them will include |I.

The last point gives a more precise definition of what we mean by
"95% confidence level" or "95% confident" from a frequentist or long-run
relative-frequency view of probability as the likelihood of an outcome over
repeatable events under constant conditions except for random error. This
view also assumes that probability is a property of nature that is independent
of what the researcher believes. In contrast, a subjectivist or subjective degree-
of-belief view defines probability as a personal belief the researcher has about
nature that is independent of nature's true state. The same view also does
not distinguish between repeatable and unrepeatable (unique) events
(Oakes, 1986; Reichardt & Gollob, 1997). Although researchers in their
daily lives probably take a subjective view of probabilities, it is the frequentist
definition that generally underlies sampling theory.
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A researcher is probably more interested in knowing the probability
that a specific 95% confidence interval contains |i than in knowing that
95/100 of all such intervals do. From a frequentist view, this probability for
the unique confidence interval of our example, 96.28-103.72, is either 0
or 1.0. That is, this interval either contains JJ, or it does not. Thus, it is
generally incorrect from this perspective to say that the interval 96.28-103.72
has a probability of .95 of including u.. Reichardt and Gollob (1997) noted
that this kind of specific probability inference and the related specific confidence
inference that one is 95% confident that the interval includes (0, is permitted
only in a very particular circumstance, which is that every possible value
of (J. is considered equally likely before the study is conducted. In Bayesian
estimation, which is based on a subjectivist view of probability, the same
circumstance is described by the principle of indifference, which says that in
the total absence of information about the parameter, equal probabilities
are assumed for all possible values. However, rarely do we have absolutely
no information about likely or even plausible values for the population
mean. In contrast, percentages associated with Bayesian confidence intervals
are interpreted as probabilities that the parameter lies within the interval.
This is what most researchers really want to know but generally cannot
get from a traditional confidence interval. The fundamentals of Bayesian
estimation are considered in chapter 9.

There is a kind of compromise language for describing traditional
confidence intervals that "splits the difference" between frequentist and
subjectivist views of probability. Applied to our example, it goes like this:
The unique interval 96.28-103.72 estimates fi, with 95% confidence. This
statement may not be incorrect from a frequentist perspective because it is
not quite a specific confidence inference. It also gives a nod toward the
subjectivist view because it associates a degree of belief with a specific
interval. Like other compromises, however, it may not please purists who
hold one view of probability or the other.

The issues raised about the proper interpretation of percentages associ-
ated with unique confidence intervals foreshadow similar difficulties in inter-
preting probabilities (p values) from statistical tests. Part of the problem is a
clash between the long-run relative-frequency view of probability generally
assumed by these tests and a subjective view of probability held by perhaps
most researchers who use them. Another is the gap between what researchers
really want to know and what ap value from a statistical test actually tells them.

Confidence Intervals for ju^ - jm,2

The standard error in a distribution of differences (contrasts) between
pairs of means from independent samples selected from different popula-
tions is
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where O"i and O2 are the population variances and HI and n2 are the sizes
of each sample (group). If we assume homogeneity of population variance
(i.e., of = o~2), the expression for the standard error reduces to

(2-7)

where a2 is the common population variance. This variance is usually
unknown, so the standard error is estimated by

where SP is the pooled within-groups variance, which is the average of the
two group variances weighted by the degrees of freedom. It's equation is

2 _ W nt - si (n2 -
Sp — ~~Tr — ^ \ £ * s )dfw nt + n2 - 2

where SSw? and dfw are, respectively, the pooled within-groups sum of squares
and degrees of freedom. The latter can also be expressed as dfw = d/i + dfi =
N - 2. Only in balanced designs can Sp also be calculated as the average
of the two group variances, or (sf + s|)/2.

The general form of a confidence interval for (Xj - |o,2 based on the
difference between independent means is

(Mt - M2) ± SMl _ M2 ft2.tail, „ (N - 2)] (2.10)

where MI - M2 is the observed mean contrast and N - 2 is the pooled
within-groups degrees of freedom (dfw) of the positive two-tailed critical
value of t at the a level of statistical significance. Suppose in a balanced
two-group design where n = 5 we observe

MI - M2 = 2.00, sf = 7.50, s^ = 5.00

which implies Sp = (7.50 + 5.00)/2 = 6.25. The standard error for the
contrast is

s M l -M = [6-25 (1/5 + 1/5)]1/2 = 1.58
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and £2-taii, .05 (8) = 2.306. The 95% confidence interval for the mean con-
trast is

2.00 + 1.58(2.306) or 2.00 ± 3.65 (2.11)

which defines the interval -1.65-5.65. Based on these results we can say
that |ii - ^.2 could be as low as -1.65 or as high as 5.65, with 95% confidence.
Please note that this interval includes zero as a reasonable estimate of
(0,1 - (J-2- This fact is subject to misinterpretation. For example, it may be
incorrectly concluded that (J^ = (J.2 because zero falls between the lower and
upper bounds of the confidence interval. However, zero is only one value
within a range of estimates of \ii - |l2, so in this sense it has no special
status in interval estimation for this example. Besides, the confidence interval
itself is subject to sampling error, so zero may not be included within the
95% confidence interval for [ij - jj,2 i

n a replication. It is the range of
overlap between the two confidence intervals (if any) that would be of
greater interest than whether zero is included in one interval or the other.
These issues are elaborated next.

Now let us consider confidence intervals for contrasts between depen-
dent means. Below we use the symbol MD to refer the average difference
score when two dependent samples are compared. A difference score is
computed as D = Xj - %2 for each of the n cases in a repeated-measures
design or for each of the n pairs of cases in a matched-groups design.
(Difference scores are also called gain scores or change scores.) If D = 0, there
is no difference; any other value indicates a higher score in one condition
than in the other. The average of all the difference scores equals the depen-
dent mean contrast, or MD = MI — M2. The standard error of Mp is

(2.12)

where the OD and OD are, respectively, the population variance and standard
deviation of the difference scores. The variance OD takes account of the
population correlation of the scores between the conditions, which is desig-
nated in Equation 2.13 as pi2. Assuming homogeneity of variance, the
variance of the difference scores is

afe = 2a2(l - p12) (2.13)

where a2 is the common population variance. When there is a stronger
subjects effect—cases maintain their relative positions across the conditions—
pi2 approaches 1.00. This reduces the variance of the difference scores,
which in turn reduces the standard error of the dependent mean contrast
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(Equation 2.12). It is this subtraction of consistent individual differences
from the standard error that makes confidence intervals based on dependent
mean contrasts generally narrower than confidence intervals based on con-
trasts between unrelated means. It also explains the power advantage of the
t test for dependent samples over the t test for independent samples, which
is considered next. However, these advantages are realized only if p^ > 0.
Otherwise, confidence intervals and statistical tests may be wider and less
powerful (respectively) for dependent mean contrasts.

The population variance of the difference scores, Oj> is usually un-
known, but it is often estimated as

where SD and $£, are, respectively, the sample variance and standard deviation
of the difference scores. The former is calculated as

SD = sf + si - 2 covn (2.15)

where cov\i is covariance of the observed scores across the conditions. It is
the product of the cross-conditions correlation and the within-conditions
standard deviations:

covl2 = rn sj s2 (2.16)

As r\i approaches 1.00, the variance sogets smaller, which in turn decreases
the estimated standard error of the dependent mean contrast.

The general form of a confidence interval for (ID is

M D ±SM D [ t 2 -« i i . « (n - l ) ] (2.17)

Suppose for a dependent samples design we observe the following data:

MI - M2 = 2.00, 5] = 7.50, s2
2 = 5.00, r12 = .735

Given the above information,

SD = 7.50 + 5.00 - 2 (.735) (7.501/2) (5.001/2) = 3.50
SMD = (3.50/5)1/2 = .837

The value of £2-011, .05 (4) is 2.776, so the 95% confidence interval for (J,D is

2.00 ± .837 (2.776) or 2.00 ± 2.32 (2.18)
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which defines the interval -.32-4.32. Please note that the 95% confidence
interval assuming a dependent-samples design is narrower than the 95%
confidence interval based on the same means and variances for an indepen-
dent-samples design, which is -1.65-5.65. (Compare Equations 2.11 and
2.18.) This result is expected because r\i is relatively high (.735) for the
dependent-samples design (r\i is presumed to be zero when the samples are
independent).

Confidence Intervals for Other Kinds of Statistics

Many statistics other than means have complex distributions. For
example, distributions of sample proportions for a dichotomous variable are
symmetrical only if the population proportion is Jl = .50; the same is true
for the Pearson correlation r only if the population correlation is p = 0.
Other statistics have complex distributions because they estimate more than
one population parameter. This includes some widely used effect size indexes
such as standardized mean differences, which for contrasts between inde-
pendent means generally estimate 8 = (flj — Ji2)/o, the ratio of the popula-
tion mean difference over the common population standard deviation.
(Chapter 4 considers standardized mean differences in detail.)

Until recently, confidence intervals for statistics with complex distribu-
tions have been estimated with approximate methods. One such method
involves confidence interval transformation (Steiger & Fouladi, 1997) in which
the statistic is mathematically transformed into units that are normally
distributed. The confidence interval is built by adding and subtracting from
the transformed statistic the product of the standard error in the transformed
metric and the appropriate positive two-tailed critical value of the normal
deviate z- The lower and upper bounds of this interval are then transformed
back into the metric of the original statistic, and the resulting interval
may be asymmetrical around that statistic. The construction of confidence
intervals for p based on the Fisher's Z transformation of r is an example of
this approach, which is covered in many statistics textbooks (e.g., Glass &
K. Hopkins, 1996, pp. 357-358). Other transformation-based methods for
constructing confidence intervals for the population parameters estimated
by effect size statistics are introduced in later chapters.

Another approximate method builds confidence intervals directly
around the sample statistic and are thus symmetrical about it. The width
of the interval on either side is a product of the two-tailed critical value
of a central test statistic and an estimate of the asymptotic standard error,
which estimates what the standard error of the statistic would be in a large
sample (e.g., N > 500). However, if the researcher's sample is not large,
the estimated standard error based on this approach may not be very accurate.
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Another drawback to this method is that the distributions of some sample
statistics, such as the multiple correlation R, are so complex that a computer
is needed to derive the estimated standard error. Fortunately, there are
increasing numbers of computer programs for calculating confidence inter-
vals, some of which are mentioned later.

A more exact method for constructing confidence intervals for statistics
with complex distributions is noncentrality interval estimation (Steiger &
Fouladi, 1997). It also deals with situations that cannot be handled by
approximate methods. This method is based on noncentral test distributions
that do not assume that the null hypothesis is true. A bit of perspective is
in order: Families of central distributions of t, F, and %2 are special cases
of noncentral distributions of each test statistic just mentioned. Compared to
central distributions, noncentral distributions have an additional parameter
called the noncentrality parameter. This extra parameter basically indicates
the degree of departure from the null hypothesis. For example, central t
distributions are described by a single parameter, the degrees of freedom,
but noncentral t distributions are described by both the degrees of freedom
and a noncentrality parameter. If this parameter equals zero, the resulting
distribution is the familiar and symmetrical central t distribution. As the
value of the noncentrality parameter is increasingly positive, the noncentral
t distributions described by it become increasingly positively skewed (e.g.,
Gumming & Finch, 2001, fig. 5). The same thing happens but in the
opposite direction for negative values of the noncentrality parameter for
t distributions.

Noncentrality interval estimation is impractical without relatively so-
phisticated computer programs for iterative estimation. Until just recently,
such programs have not been widely available to applied researchers. A
notable exception in a commercial software package for general statistical
analyses is the Power Analysis module by J. Steiger in STATISTICA
(StatSoft Inc., 2003), which can construct noncentral confidence intervals
based on several different types of statistics (Steiger & Fouladi, 1997). This
includes many of the standardized indexes of effect size introduced in later
chapters. There are now also a few different stand-alone programs or scripts
(macros) for noncentrality interval estimation, some available for free
through the Internet. These programs or scripts are described in chapter 4,
and the Web site for this book also has links to corresponding download
pages.

Later chapters demonstrate the calculation of both approximate and
more exact noncentral confidence intervals for standardized effect size in-
dexes. The technique of bootstrapping, a method for statistical resampling,
can also be used to construct confidence intervals. Chapter 9 reviews the
rationale of bootstrapping.
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LOGIC OF STATISTICAL SIGNIFICANCE TESTING

A brief history of NHST was given earlier. This section outlines the
basic rationale and steps of NHST as it is often practiced today. The fol-
lowing review lays the groundwork for understanding limitations of
NHST considered in the next chapter.

Contexts and Steps

There are two main contexts for NHST, reject-support (RS) and accept-
support (AS). The former is the most common and concerns the case in
which rejection of the null hypothesis supports the researcher's theory. The
opposite is true in AS testing: It is the failure to reject the null hypothesis
that supports what the researcher actually believes. Listed next are the main
steps of NHST for both RS and AS testing. Each step is discussed in the
sections that follow with emphasis on points that are not as well known as
they should be.

1. Based on the research question, formulate the first of two
statistical hypotheses, the null hypothesis HQ.

2. Formulate the second statistical hypothesis, the alternative
hypothesis H].

3. Set the level of statistical significance a, which is the probabil-
ity of a Type I error.

4- Collect the data and determine its probability p under H0 with
a statistical test. Reject HQ if p < oc.

Null Hypotheses

The null hypothesis is a default explanation that may be rejected later
given sufficient evidence. In RS testing, this default explanation is the
opposite of the researcher's theory; in AS testing, the null hypothesis reflects
the researcher's theory. In either RS or AS testing, the null hypothesis is
usually a point hypothesis that specifies the numerical value of at least one
population parameter. There are two different kinds of null hypotheses (J.
Cohen, 1994). A nil hypothesis says that the value of a population parameter
is zero or the difference between two or more parameters is zero. Examples
of nil hypotheses are presented next:

H0: M-D = 0 H0: Hi - M-z = 0 H0: p = 0

Nil hypotheses are usually statements of absence, whether of an effect,
difference, or association. In contrast, a non-ni( hypothesis asserts that a
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population parameter is not zero or that the difference between two or more
parameters is not zero. It typically assumes a non-zero effect, difference, or
association. Examples of non-nil hypotheses are given next:

H0: Ho = 10.00 H0: Hi - \L2 = 5.00 H0: p = .30

Nil hypotheses as default explanations are generally most appropriate
when it is unknown whether effects or relations exist at all, such as in new
research areas where most studies are exploratory. However, nil hypotheses
are less suitable when it is known a priori that an effect is probably not
zero. This is more likely in established research areas. For instance, it is
known that women and men differ in certain personality characteristics
(e.g., Feingold, 1994). Specification of H0: (ii - (0.2 = 0 (i.e., H0: \i\ = M-2)
when testing gender differences in these characteristics may set the bar too
low because this nil hypothesis is probably false. Accordingly, rejecting it
is not an impressive scientific achievement. There are also situations where
specification of a nil hypothesis is clearly indefensible. One example is using
a nil hypothesis to test a reliability coefficient for statistical significance.
For example, Abelson (1997a) noted that declaring a reliability coefficient
to be nonzero based on such a test is the "ultimate in stupefyingly vacuous
information" (p. 121). This is because what is really important to know is
whether a reliability coefficient is acceptably high for a specific purpose,
such as rxx > -90 when a test is used for individual assessments that determine
access to treatment resources.

Nil hypotheses are tested much more often in the social sciences than
non-nil hypotheses. This is true even in established research areas where a
nil hypothesis is often a "straw man" argument. There are at least three
reasons for this puzzling situation: Many researchers are unaware of the
possibility to specify non-nil hypotheses. Statistical software programs usually
test only nil hypotheses. This means that tests of non-nil hypotheses must
be computed by hand. Unfortunately, this is generally feasible only for
relatively simple non-nil hypotheses, such as HQ: Hi - H-2 = 5.00, which can
be evaluated without difficulty with the t test.

Alternative Hypotheses

This second statistical hypothesis complements HQ. In RS testing, the
alternative hypothesis HI represents the researcher's theory; in AS testing,
it does not. Unlike the null hypothesis, the alternative hypothesis is typically
a range hypothesis that specifies a range of values for the population parame-
ter^). The two kinds of alternative hypotheses are directional (one-tailed,
one-sided) and nondirectional (two-tailed, two-sided). Anondirectionalalter'
native hypothesis predicts any result not specified in HQ, but a directional
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alternative hypothesis specifies a range of values on only one side of the point
prediction in HQ. For example, given HQ: (J-i = |J.2> there is only one possible
nondirectional alternative hypothesis, HI: |li ^ (J,2, but two possible direc-
tional alternatives, HI: \li > |J,2 or Hj: (0,1 < JJ.2-

The choice between a nondirectional or directional H] is supposed to
be made before the data are collected. If there are a priori reasons to expect
a directional effect, the appropriate directional HI should be specified;
otherwise, a nondirectional H! may be a safer bet. The choice between a
directional or nondirectional H! affects the results of statistical tests as
follows: It is easier to reject H0 when a directional HI is specified and the
data are in the same direction. If H0 is actually false, there is also greater
statistical power compared to a nondirectional HI. However, if a directional
H! is specified but the data indicate an effect in the opposite direction,
then one is supposed to fail to reject HO even if the results are very inconsis-
tent with it. In practice, however, these conventions are not always followed.
For example, it is sometimes not possible to reject HQ for a nondirectional
H! but it is possible for a directional HI- A researcher who initially specified
a nondirectional HI may "switch" to a directional alternative hypothesis to
reject the null hypothesis. It also happens that researchers "switch" from
one directional Hj to another depending on the data, again to reject HQ.
Some would consider changing HO or HI based on sample results a kind of
statistical "sin" that is to be avoided. Like admonitions against other kinds
of sins, they are not always followed.

Level of Type I Error

Alpha (a) is the probability of making a Type I error; more specifically,
it is the conditional prior probability of rejecting HQ when it is actually true
(Pollard, 1993). Alpha is a prior probability because it is specified before
the data are collected, and it is a conditional probability because HO is
assumed true. In other words,

cc = p (Reject H0 | H0 true) (2.19)

where the symbol "|" means assuming or given. Alpha can also be understood
as the probability of getting a result from a random sample that leads to
the incorrect decision to reject the null hypothesis. All these descriptions
of a are also long-run, relative-frequency statements about the probability
of a Type I error.

Conventional levels of a in the social sciences are either .05 or .01.
When other levels are specified, they tend to be even lower, such as (X =
.001. It is rare for researchers to specify a levels higher than .05. The main
reason is editorial policy: Manuscripts may be rejected for publication if
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(X > .05. This policy would make more sense if the context for NHST were
always RS testing where a Type I error is akin to a false positive because
the evidence is incorrectly taken as supporting the researcher's theory. As
noted by Steiger and Fouladi (1997), the value of (X should be as low as
possible from the perspective journal editors and reviewers, who may wish
to guard against incorrect claims. In AS testing, however, they should worry
less about Type I error and more about Type II error because false claims
in this context arise from not rejecting HQ. Insisting on low values of (X in
this case may facilitate publication of erroneous claims.

It is important to realize that oc sets the risk of a Type I error for a
single hypothesis test. However, rarely is just one hypothesis tested. When
multiple statistical tests are conducted, there is also an experimentwise (family'
wise) probability of Type I error, designated below as (XE^. It is the likelihood
of making one or more Type I errors across a set of tests. If each individual
test is conducted at the same level of a, then

aEW = 1 - (1 - a)c (2.20)

where c is the number of tests, each conducted at the a level of statistical
significance. In this equation, the term (1 - Ct) is the probability of not
making a Type I error for any individual test; (1 - a)c is the probability of
making no Type I errors across all tests; and the whole expression is the
likelihood of committing at least one Type I error among the tests. We
need to understand a couple of things about this equation. If only one
hypothesis is tested, then <XEW = a. If there are multiple tests, this equation
is accurate only if the hypotheses or outcome variables are perfectly uncorre-
lated. If not, the estimated rate of experimentwise Type I error given by
this equation will be too low. The result generated by the equation is the
probability of one or more Type I errors, but it does not indicate how many
Type I errors may have been committed (it could be 1, or 2, or 3 . . . ) or
on which hypothesis tests they occurred. Suppose that 20 statistical signifi-
cance tests are conducted each at a = .05 level in the same sample. The
experimentwise Type I error rate is

<XEW = 1 - (1 - -05)20 = .64

In other words, the risk of a making a Type I error across the whole set of
20 tests is 64%, given the assumptions just stated.

There are two basic ways to control experimentwise Type I error:
Reduce the number of tests or lower (X for each one. The former can be
realized by honing one's questions down to the most substantively meaningful
(prioritize the hypotheses). This also means that "fishing expeditions" where
essentially every effect is tested are to be avoided. Another way to reduce
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the number of hypotheses is to use multivariate methods, which can test
hypotheses across several variables at once. There is a relatively simple
method to set a for individual tests called the Bonferroni correction: Divide
a target value of (XEW by the number of tests, and set the corrected level of
statistical significance a* for each individual test to the value of this ratio.
Suppose a researcher wishes to limit the experimentwise risk of Type I error
to 10%. If a total of 20 tests are planned, then a* = .10/20 = .005 for each
individual test. Other methods are considered in chapter 6. However, readers
should know that not all methodologists believe that controlling experiment-
wise Type I error is a generally desirable goal in the social sciences. This
opinion stems from the apparently low general statistical power of social
science research, an issue discussed later.

Like the choice between a directional and nondirectional HI, the
decision about a is supposed to be made before the data are collected. For
example, if a = .01 but the estimated probability of the data under HQ is
.03, one is supposed to fail to reject HQ. However, the temptation to increase
(X (or cc*) from .01 to .05 to reject HQ may be strong in this case. Increasing
a based on the data is another form of statistical sin that occurs in the
real world.

Statistical Tests

The most widely used test statistics in the social sciences are probably
the £, F, and %2 statistics, but there are many others. Although different in
their applications, assumptions, and distributions, all such tests do basically
the same thing: A result is summarized with a sample statistic. The difference
between the statistic and the value of the corresponding population parame-
ter(s) specified in the null hypothesis is compared against an estimate of
sampling error. A computer program for general statistical analyses will
convert test statistics to probabilities based on the appropriate theoretical
central test distribution. These probabilities are often printed in program
output under the column heading p, which is the same abbreviation used
in many journal articles. One should not forget that p actually stands for
the conditional probability

p (Data | H0 true)

which should be understood as the likelihood of the sample result or one
even more extreme assuming the null hypothesis is true. Both p and a are
derived in the same sampling distribution and are properly interpreted as
long-run, relative-frequency probabilities. Unlike a, however, p is not the
conditional prior probability of a Type I error because it is computed for a
particular sample result. To differentiate the two probabilities, Gigerenzer
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(1993) referred to p as the exact level of significance. If this exact significance
level is less than the conditional prior probability of a Type I error (p <
a), then HO is rejected and the result is considered statistically significant
at that level of a. If a = .05 and p = .032, for example, then H0 is rejected,
the result is taken as statistically significant at the .05 level, and its exact
level of statistical significance is .032.

It can be shown that many test statistics can be expressed as the product

Test statistic = / (N) X ES index (2.21)

where / (N) is a function of sample size for the particular test statistic and
ES Index is an effect size index that expresses the degree of discrepancy
between the data and HQ in a standardized metric (R. Rosenthal, 1994).
Various standardized effect size indexes are introduced in later chapters, but
for now consider two implications of this equation:

1. Holding sample size constant, the absolute values of test statis-
tics generally increase with no upper bound and their p values
approach zero as the effect size increases.

2. Holding constant a non-zero effect size, increasing the sample
size causes the same change in test statistics and p values.

These implications explain how it is possible for even trivial effects
to be statistically significant in large samples. They also explain how even
large effects may not be statistically significant in small samples. In other
words, statistical significance does not imply that an effect is large, important,
or even interesting. By the same token, one cannot conclude that the
absence of statistical significance indicates a small or unimportant effect.

That p values from statistical tests (a) are both conditional and long-
run, relative-frequency probabilities and (b) measure sample size as well as
effect size makes them apparently difficult to correctly interpret. Evidence
that p values are in fact widely misunderstood in the behavioral sciences
like psychology is considered in the next chapter.

POWER

Power is the conditional prior probability of making the correct decision
to reject HQ when it is actually false, or

Power = p (Reject H0 | H0 false) (2.22)

A Type II error, on the other hand, occurs when the sample result leads
to the failure to reject H0 when it is actually false. The probability of
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a Type II error is usually represented by P, and it is also a conditional
prior probability:

(3 = p (Fail to reject H0 | H0 false) (2.23)

Because power and (3 are complementary, or

Power + P = 1.00 (2.24)

whatever increases power decreases the probability of a Type II error and vice
versa. Summarized next are factors that affect the power of statistical tests:

1. The lower the level of (X, the lower is power. Thus, reducing
the chance of a Type I error increases the likelihood of a Type
II error. However, there are other ways to increase power
besides increasing a.

2. Power is greater in larger samples. This fact is demonstrated
below for the test statistics t, F, and %2.

3. Power is greater when H\ is directional and the population
effect is in the same direction. If the two disagree, however,
power is essentially zero.

4. Study design: (a) Correlated designs are generally more power-
ful than independent-samples designs. Blocking designs and
covariate analyses may also increase power, (b) Balanced de-
signs are generally more powerful than unbalanced designs,
(c) Tests for effects of fixed factors are usually more powerful
than tests for effects of random factors.

5. Power declines as the reliability of the scores in a particular
sample is lower. With lower score reliability comes higher error
variance, which makes it more difficult to detect a real effect.

6. Parametric tests such as t and F are generally more powerful
than nonparametric tests. See Siegel and Castellan (1988) for
information about nonparametric tests.

7. In general, the larger an effect in the population for a given
design, the easier it is to detect in samples. However, the
magnitude of the real effect that can theoretically be observed
is somewhat under the control of the researcher. For example,
a longer, more intense intervention may potentially have a
larger effect than a shorter, less intense intervention.

A power analysis gives the probability of rejecting HQ. There are two
kinds. An a priori power analysis is conducted before the data are collected.
It involves (a) specification of the study's planned characteristics, such as
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the level of a and the sample size; and (b) estimation of the expected
magnitude of the population effect. The latter may be based on theory,
results of previous empirical studies, or an educated guess. If the researcher
is uncertain about the population effect size, power can be calculated for a
range of estimates. A variation is to specify a desired level of power and
then estimate the minimum sample size needed to obtain it. A post hoc
power analysis is conducted after the data are collected. The observed effect
size is treated as the population effect size, and the probability of rejecting
the null hypothesis given the study's characteristics is estimated. However,
a post hoc analysis that shows low power is more like an autopsy than a
diagnostic procedure. That is, it is better to think about power before it is
too late.

In the past, researchers conducted power analyses by consulting special
tables presented in sources such as J. Cohen (1988). Now there are several
computer programs for power analysis on personal computers. Some of
these programs, such as the Power Analysis module of STATISTICA, use
noncentral test distributions, which are generally necessary for correct power
estimates. Power analysis programs assume the user knows something about
the effect size indexes described in later chapters.

Estimated power levels no higher than .50 are problematic. If power
is only .50, the probability of rejecting HQ when it is false is no greater than
guessing the outcome of a coin toss. In fact, tossing a coin instead of actually
conducting a study would be just as likely to give the correct decision and
would save time and money, too (F. Schmidt & Hunter, 1997). Unfortu-
nately, the results of several reviews indicate that the typical power of
social science research may be no greater than about .50 (e.g., Sedlmeier
& Gigerenzer, 1989). When power estimates are broken down by whether
estimated effect sizes are small, medium, or large—specific definitions of
these adjectives are given in chapter 4—their values are about .20, .50, and
.80, respectively. Power for the study of large effects, .80, is certainly better
than for the others listed but still results in a Type II error rate of 20%.
Increasing sample sizes would address the problem of low power, but the
number of additional cases necessary to reach even a power level of .80
when studying effects of small or medium magnitude may be so great as to
be practically impossible (F. Schmidt, 1996). This is a critical limitation of
NHST in the social sciences.

The concept of power does not stand by itself without NHST. As
statistical tests play a smaller role in our analyses, the relevance of power
will also decline. If statistical tests are not used at all, the whole idea of
power is meaningless. Besides, it is a stronger scientific result to observe the
same effect at p < .10 across two different smaller samples than to find p <
.05 in one larger sample.
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OVERVIEW OF SPECIFIC STATISTICAL TESTS

Reviewed next are essential characteristics of three widely used test
statistics in the behavioral sciences, the t and F statistics for means and the
%2 statistic for two-way contingency tables. The F statistic is part of a family
of techniques known as the analysis of variance (ANOVA), but note that
the F statistic is not synonymous with ANOVA. That is, we can conduct
an ANOVA without computing the F statistic, but not vice versa. It is
reviewed only for designs with a single fixed factor, but its basic logic
generalizes to other kinds of designs with continuous outcome measures
(chapters 6 and 7). The t statistic is discussed only for designs with two
conditions, such as treatment versus control. It is important for readers to
know that the t, F, and %2 statistics are not reviewed for their own sakes.
This is because they are subject to the general drawbacks of all NHST
methods that are considered in the next chapter. These shortcomings are
so serious that it is recommended that the continued use of statistical tests
as the primary inference tool in the behavioral sciences is not acceptable.
However, familiarity with the sample descriptive statistics that contribute
to the t, F, and %2 statistics gives one a head start toward understanding
effect size estimation. It is also possible in many cases to compute effect
size indexes from these test statistics. Please also note that the sampling
distributions of the t, F, and %2 tests described are, respectively, the central
t, central F, and central %2 distributions in which the null hypothesis is
assumed to be true. In later chapters readers will learn more about noncentral
t and noncentral F distributions in which the null hypothesis is assumed
to be false. These distributions are required for calculating exact confidence
intervals based on certain kinds of standardized indexes of effect size.

t TESTS FOR MEANS

The t tests reviewed compare means from either two independent or
dependent samples. Both are actually special cases of the F test for means.
Specifically, t2 = F when both statistics are computed for the same mean
contrast for a nil hypothesis. The statistical assumptions of the t tests for
independent versus dependent samples are the same as those of the corres-
ponding F tests and are discussed later.

The general form of the t statistic for a contrast between independent
means is
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where N - 2 is the pooled within-groups degrees of freedom (dfw), MI - M2

and SM -M are> respectively, the observed mean contrast and its standard

error (Equation 2.8), and Hi - (J-2 is the population mean difference specified
in the null hypothesis. If the latter is predicted to be zero, a nil hypothesis
is tested; otherwise a non-nil hypothesis is tested.

The t statistic for a dependent mean contrast has the same overall form:

where the degrees of freedom equal the group size (n) minus 1, MD and
SM are, respectively, the observed average difference score and its standard

error (Equation 2.14), and [ID is the population average difference score
specified in the null hypothesis. For a nil hypothesis, (ip = 0, and this term
drops out of the equation.

Assuming a nil hypothesis, both forms of the t statistic defined earlier
express a mean contrast as the proportion of its standard error. If t = 1.50,
for example, the first mean is I1/! standard errors higher than the second,
but note that the sign of t is arbitrary because it depends on the direction
of subtraction between the two means. It is important to realize that the
standard error metric of the C test is affected by sample size, which is
demonstrated now.

This is explained in Tables 2.1 and 2.2, described next. Table 2.1
presents the means and variances of two groups where MI — M2 = 2.00.
Table 2.2 reports the results of the independent samples t test for the data
in Table 2.1 at three different group sizes, n = 5, 15, and 30, for a nondirec-
tional HI- (Readers are encouraged to reproduce these results.) Please note
in Table 2.2 that the value of the pooled within-groups variance for these
data, SP = 6.25, is unaffected by group size. This is not true for the standard
error of MI - M2, which, as expected, gets smaller as n increases. This causes
the value of t to go up and its probability to go down for the larger group
sizes. Consequently, the t statistic for n = 5 does not indicate a statistically
significant contrast at the .05 level, but it does for the two larger group
sizes. Results for the latter indicate less expected sampling error, but not a

TABLE 2.1
Means and Variances for Two Independent Samples

Group

M 13.00 11.00
s2 7.50 5.00
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TABLE 2.2
Results of the Independent Samples t Test for the Data in Table 2.1 at

Three Different Group Sizes

Group size (n)

Statistic

SM^ - M2
t
df
P
fe-tail, .05
95% Cl for (I-, - \i2

5

1.58
1.26

8
.243

2.306
-1 .64-5.64

15

.913
2.19
28

.037
2.048

.13-3.87

30

.645
3.10
58

.003
2.002

.71-3.29

Note. For all analyses, M, - A4 = 2.00 and s£ = 6.25. Cl = confidence interval.

different or more substantial mean contrast. This reduction in sampling
error is also evident in the 95% confidence intervals about the observed
mean difference: Their widths decrease as n gets larger.

The standard error metric of the t test is also affected by whether the
means are independent or dependent. This is demonstrated next. Table 2.3
presents raw scores and descriptive statistics for a small data set where the
observed mean difference is 2.00. Reported in Table 2.4 are the results of
two different t tests and 95% confidence intervals for the data in Table 2.3.
The first analysis assumes n = 5 cases in each of two unrelated samples, but
second analysis assumes n = 5 pairs of scores across two dependent samples.
Only the second analysis takes account of the positive cross-conditions
correlation for these data, r12 = .735. Observe in Table 2.4 the narrower
95% confidence interval, the higher value of t, and its lower p value in the
dependent samples analysis relative to the independent samples analysis of
the same data.

M
s2

TABLE 2.3
Raw Scores and Descriptive Statistics for Two

Condition

1

9
12
13
15
16

13.00
7.50

Samples

2

8
12
11
10
14

11.00
5.00

Note. In a dependent-samples analysis, r,2 = .735 and = sg = 3.50.
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TABLE 2.4
Results of the Independent Samples t Test and the Dependent Samples

fTest for the Data in Table 2.3

Analysis

Independent samples
Dependent samples

Standard
error

1.58
.837

95% Cl
for n, - n2

-1.64-5.64
.32-4.32

t

1.26a

2.38b

df

8
4

Note. Cl = confidence interval. For both analyses, M, - ftfe = 2.00.
ap = .243. "p = .076.

The results reported in Tables 2.2 and 2.4 show a special correspon-
dence between 95% confidence intervals based on mean contrasts and results
of the t test conducted with the same data at the .05 level for a nil hypothesis
and a nondirectional alternative hypothesis: The confidence interval in-
cludes zero if HO is not rejected, but it does not include zero if H0 is rejected.
This relation is not surprising because the same basic information that goes
into a confidence interval goes into a statistical test. However, much of this
information is hidden if all that is reported is a test statistic and its p value.
A mathematically sophisticated reader may be able to construct a confidence
interval from the test statistic by solving for the standard error, but simply
reporting the confidence interval makes this information accessible to all.

An important point should be made: Thompson (2002b) and others
noted that it is erroneous to equate confidence intervals and statistical tests
because of the special correspondence between them, mentioned previously.
This is because the most informative use of confidence intervals compares
them across different studies, not whether a particular interval includes zero.
This most informative use concerns replication, something that results of
statistical tests in a single study cannot address. The same author also makes
the point that statistical tests cannot be conducted without a null hypothesis,
but no hypothesis is required for a confidence interval. These ideas are
elaborated in the next chapter.

F TESTS FOR MEANS

The £ statistic compares only two means. Such contrasts are focused
comparisons, and they address specific questions, such as whether treatment
is superior to control. All focused comparisons are single-df, directional
effects. The F statistic can also analyze focused comparisons—recall that
t = F for a mean contrast. The F statistic, but not t, can also be used in
omnibus comparisons, which simultaneously compare at least three means
for equality. Suppose that factor A has a = 3 levels. The omnibus effect of
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A has two degrees of freedom (d/A = 2), and the overall F test of this effect
evaluates the following nil and nondirectional alternative hypotheses:

H0: M-i = ^2 = 1^3 and HI: |at * |X2 * |I3 G-e., not H0)

Rejecting HQ in favor of Hj for the previous example says only that the
differences among the observed means MI, M2, and Mj are unlikely assuming
equal population means. This result alone is often not very informative. That
is, a researcher may be more interested in a series of focused comparisons, such
as the contrast of the first level of A with the second (e.g., HQ: (J,i = JJ-2.
HI: Hi > (^2 )> which break down the omnibus effect into specific directional
effects. Accordingly, it is common practice to either follow an omnibus
comparison with focused comparisons or forego the omnibus comparison
and analyze only focused comparisons.

The logic of F as a test statistic for the omnibus comparison in a design
with a single fixed factor A with two or more levels is explained next. There
are separate sections about omnibus F statistics for designs with independent
samples and for designs with dependent samples. The presentations for
correlated designs are more technical. However, readers interested in meth-
ods for independent samples can skip the sections about correlated designs
without difficulty.

Independent Samples F Test

The general form of the F statistic for the omnibus effect in a single-
factor design with independent samples is

P (dfA, dfw) = (2.27)

where d//\ and d/\y are, respectively, the degrees of freedom for the numerator
and denominator of F. The former equals the number of levels of factor A
minus one, or d/^ = (a -1), and the latter is the total within-groups degrees
of freedom, or

a a

dfw= £$= I ("i-D = N - a (2.28)
i = 1 i = 1

The numerator of F is the between-conditions (groups) mean square. Its
equation is

i>(M,-MT)2

= ^ = — ; (2.29)
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where $SA is the between-conditions sum of squares, n,- and MJ are, respec-
tively, the size and mean of the zth condition, and Mj is the mean for the
total data set. The latter is the grand mean, the average of all N scores. The
value of MT can also be computed as the weighted average of the condition
means or only in a balanced design as the arithmetic average of the condition
means. Please note in this equation that group size contributes only to the
numerator of the between-conditions variance, SS^- The implication of this
fact is demonstrated next.

The numerator of F, MS^, reflects group size and sources of variability
that give rise to unequal group means, such as a systematic effect of factor
A or sampling error. It is the error term (denominator) of F, the pooled within-
conditions mean square MS^, that measures only unexplained variance. This
is because cases within the same condition are treated alike, such as when
patients in a treatment group are all given the same dosage of the same
drug. Because drug is a constant for these patients, it cannot account for
individual differences among them. The equation for the error term is

Z d/< <5<2)
"X /C1 ^^W i — 1 /I OA\Mi>v7 = -17— = —— (2JO)

®Jw

i= 1

where d/i and S; are, respectively, the degrees of freedom (i.e., HJ — 1) and
variance of the zth group. When there are only two groups, MS\x/ = sp
(Equation 2.9), and only in a balanced design can MS^ also be computed
as the arithmetic average of the individual within-groups variances. Please
note in this equation that group size contributes to both the numerator and
denominator of MS\^, which effectively cancels out its effect on the error
term of F.

The total sums of squares, SSf, reflects the amount of variability in
the total data set. It is the sum of squared deviations of the individual scores
from the grand mean; it also equals SS/\ + SS\^/. We will see in later chapters
that SS-j- is important for effect size estimation with descriptive measures of
association in essentially any comparative study where ANOVA is used.

Presented in Table 2.5 are the means and variances of three indepen-
dent samples, and reported in Table 2.6 are results of the one-way F test
for these data at three different group sizes, n = 5, 15, and 30. Observe that
across all three ANOVA source tables in Table 2.6, the value of the error
term is constant, MS\>7 = 5.50. The dependence of M$A and F on group
size is obvious: Both increase along with the group size, which also progres-
sively lowers the probability values for F from p = .429 for n = 5 to p =
.006 for n = 30. This change in p values occurs even though the group
means and variances are constant across all analyses.
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TABLE 2.5
Means and Variances for Three Independent Samples

Group

M
s2

13.00
7.50

11.00
5.00

12.00
4.00

TABLE 2.6
Results of the Independent Samples FTest at Three Different Group

Sizes for the Data in Table 2.5

Source SS df MS

Between (A)
Within (error)
Total

Between (A)
Within (error)
Total

Between (A)
Within (error)
Total

10.00
66.00
76.00

30.00
231 .00
261.00

60.00
478.50
538.50

n = 5
2

12
14

n= 15
2

42
44

n = 30
2

87
89

5.00
5.50

15.00
5.50

30.00
5.50

.91a

2.73b

5.45C

ap = .429. bp = .077. cp = .006.

Weighted- Versus Unweighted-Means Analysis

The standard F statistic described earlier is used in a weighted'means
analysis. This is because the squared deviation of each condition mean from
the grand mean is weighted by group size when MS^, the numerator of F,
is computed (Equation 2.29). If the design is unbalanced, the means from
the bigger groups get a larger weight. This is not a problem if unequal study
group sizes reflect unequal population group sizes. An unweighted-means
analysis may be preferred if unequal group sizes are a result more of sampling
artifacts. All means are given the same weight in this method. This is
accomplished by (a) computing the grand mean as the arithmetic average
instead of the weighted average of the group means and (b) substituting an
average group size for the actual group sizes in the equation for M$A- This
average group size is the harmonic mean:
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— (2.31)

1/n,
i= 1

where n.j is the actual size of the ith group. Note that a weighted-means
analysis and an unweighted-means analysis generate the same value of F in
a balanced design.

Assumptions of the Independent Samples F Test

It is stated in many introductory statistics textbooks that the assump-
tions of the F test in designs with independent samples and fixed factors
include independence of the observations, normal population distributions,
and equal population variances. The latter is the assumption of homogeneity
of variance, and it is necessary whenever error terms include variances
averaged across different conditions (e.g., Equation 2.30). However, there
are related requirements that may not be explicitly stated in introductory
textbooks. These include the requirements that all levels of each fixed factor
are included in the experiment and that treatments are additive and have
no affect on the shapes or variances of population treatment distributions
(Winer, Brown, & Michels, 1991). If a treatment is studied that is expected
to affect both the average level and variability of cases, the latter requirement
may be violated. Altogether these requirements are more restrictive than
many researchers realize.

The p values from the F test are computed under these assumptions.
If these assumptions are violated, then the p values of these tests—and
decisions based on them, namely whether to reject HQ—may not be accurate.
If observed p values wind up being too low because of violation of assump-
tions, there is a positive bias because Hg is rejected more often than it should.
In the RS context for statistical tests, this implies that the researcher's
hypothesis is supported more often than it should be. It can also happen
that observed p values can be too high because of violation of assumptions,
which may reduce power.

There is a relatively large literature about the consequences of violating
the assumptions of statistical tests in general and the F test in particular in
fixed-effects ANOVA. It is beyond the scope of this section to review this
literature in detail, so only an overview is presented; readers are referred to
Winer et al. (1991, pp. 100-110) and a review article by Glass, Peckham,
and Sanders (1972) for more information. The independence assumption
is critical because nonindependence can seriously affect both p values and
power regardless of whether the group sizes are equal or unequal. This
requirement should generally be seen as an essential property of the research
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design. It was believed that the normality assumption is generally unimpor-
tant in that it can be violated with relative impunity with little effect on
p values or power. It was also believed that the F test is relatively insensitive
to variance heterogeneity. However, recent work by Wilcox (1987, 1998)
and others indicate that (a) even relatively small departures from normality
can sometimes distort the results of the standard t or F tests; (b) there can
be serious positive bias in these tests when the ratio of the largest over the
smallest within-groups variance is 9 or greater; and (c) the degree of inaccu-
racy in p values may be greater when the group sizes are small and unequal
or when heterogeneity is associated with one outlier group than when it is
spread across all the groups (Keppel, 1991). There are versions of both the
t and F tests for independent samples that do not assume normality or
homogeneity of variance (e.g., Winer et al., 1991, pp. 66-69; Wilcox, 1987),
but they are not used nearly as often as the standard t and F tests based on
these assumptions.

Reviewed in the next chapter is evidence that the assumptions of t,
F, and other statistical tests seem to be infrequently met or evaluated in
applied behavioral research. This is another serious shortcoming of the use
of statistical tests in the behavioral sciences.

Dependent Samples F Test

The between-conditions variance, M$A, and the pooled within-condi-
tions variance, MS^, are computed the same way regardless of whether the
samples are independent or dependent (Equations 2.29-2.30). However,
the latter no longer reflects just unexplained variance when the samples
are dependent, so it is not the error term for the omnibus F statistic in a
correlated design. This is because of the subjects effect, which in a one-
way design is manifested in positive covariances between every pair of
conditions. When the independent variable has three or more levels, the
average covariance across all pairs of conditions, Mcov, estimates the subjects
effect for the whole design. Removing this effect from the pooled within-
conditions variance (literally, MS^ - MCMI) gives the error term for F in a
one-way design with dependent samples. This error term reflects inconsistent
performance across the conditions. This inconsistency may be a result of
random variation or to a nonadditive effect, which means that the indepen-
dent variable does not have the same relative impact on all cases. In other
words, there is some characteristic of participants that moderates the effect
of factor A, either amplifying or diminishing it. For example, a drug may
be more effective for older patients than younger patients. This moderator
effect is also known as a person X treatment interaction.

In an additive model, which assumes no true person X treatment interac-
tion, the error term of the dependent samples F statistic is presumed to
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reflect only random error. In some sources, this error term is designated as
MSres, where the subscript refers to residual variance. However, an additive
model is probably unrealistic for many within-subjects factors in the behav-
ioral sciences. A nonadditive model assumes a true person x treatment interac-
tion, and the error term in this model may be called MSA x s. where the
subscript reflects this assumption. This notation is used later. Unfortunately,
it is not possible to separately estimate variability because of random error
versus a true person X treatment interaction when each case is measured
once in each condition, which is typical in one-way within-subjects designs.
This implies that MSres = MSA x s in the same data set, so the distinction
between them is more conceptual than practical. Cases in which the assump-
tion of additive versus nonadditive models makes a difference in effect size
estimation are considered in chapter 6.

We can now define the general form of the omnibus F test for single-
factor designs with dependent samples assuming a nonadditive model:

(2-32)

where d/A *§ = (a - 1) (n — I) and MSA x s
 = MS^ - Mcov. The latter can

also be expressed as

SSAxS SSW - SSS ,- --,
xs = -7 - = ~T - ~J (2.33)

where SS$ is the sum of squares for the subjects effect with dfa = n — 1
degrees of freedom. Equation 2.33 shows the removal of the subjects effect
from the pooled within-conditions variability in a correlated design, which
is the same basic subtraction that generates the error term of the dependent
samples t statistic (Equation 2.15). Equation 2.33 also shows the decomposi-
tion of the total within-conditions sums of squares into two parts, one
because of the subjects effect and the other associated with the error term,
or oiw = Sjj + 3oA x 5.

The F test for dependent samples has the same potential power advan-
tage over the F test for independent samples as the t test for dependent
samples has over its independent samples counterpart. This is demonstrated
with the data for three samples presented in Table 2.7. The results of two
different F tests conducted with these data are reported in Table 2.8. The
first analysis assumes n = 5 cases in each of three independent samples, and
the second analysis assumes n = 5 triads of scores across three dependent
samples. Only the second analysis takes account of the positive correlations
between each pair of conditions, which range from .730 to .839 (Table 2.7).
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TABLE 2.7
Raw Scores and Descriptive Statistics for Three Samples

M
s2

1

9
12
13
15
16

13.00
7.50

Condition

2

8
12
11
10
14

11.00
5.00

3

10
11
13
11
15

12.00
4.00

Note. In a dependent samples analysis, r12 = .735, r13 = .730, and r23 = .839.

Observe the higher F and lower p values for the dependent samples analysis
even though the group means and variances are constant.

Assumptions of the Dependent Samples F Test

The same assumptions of the independent samples F test—
independence, normality, and homogeneity of variance—apply to the
dependent samples F test. However, there are additional assumptions that
concern the correlations between multiple measures obtained from the same
cases (or sets of matched cases). When a within-subjects factor has at least
three levels, these assumptions are relatively complicated and quite difficult
to meet in practice. An additional requirement is that of sphericity or circular'
ity, which assumes that the population variances of the difference scores
between every pair of conditions are equal. This assumption is critical

TABLE 2.8
Results of the Independent Samples FTest and the Dependent Samples

FTest for the Data in Table 2.7

Source

Between (A)
Within (error)
Total

Between (A)
Within

Subjects (S)
Ax S (error)

Total

SS df

Independent samples analysis
10.00 2
66.00 12
76.00 14

Dependent samples analysis
10.00 2
66.00 12
54.67 4
11.33 8
76.00 14

MS

5.00
5.50

5.00
5.50

13.67
1.42

F

.91 a

3.53b

ap = .429. bp = .080.

54 FUNDAMENTAL CONCEPTS



because even relatively minor violations of this assumption may lead to
rejecting HQ too often (i.e., resulting in a positive bias). There are statistical
tests intended to detect departure from sphericity, but they have been
criticized for restrictive assumptions of their own, such as normality. Some
methodologists suggest that the sphericity requirement may not be tenable
in most behavioral studies and that researchers should direct their efforts
to controlling bias (Keppel, 1991). There are basically five options for dealing
with the sphericity assumption that are briefly summarized next; see H.
Keselman, Algina, and Kowalchuk (2001), Max and Onghena (1999), or
Winer et al. (1991, pp. 239-273) for more information:

1. Assume maximal violation of sphericity, compute F in the
usual way, but compare it against a higher critical value. This
critical F has only 1 and n - 1 degrees of freedom; the standard
critical F for comparing a dependent means has a - 1 and
(a- 1) (n- 1) degrees of freedom. This method has been
called the Geisser-Greenhouse conservative test or the Geisser-
Greenhouse correction.

2. Estimate the degree of departure from sphericity with a statistic
called estimated epsilon, £. This statistic ranges from l/(a — 1),
which indicates maximal departure to 1.00, which in turn
indicates no violation of sphericity. The degrees of freedom
for the critical value for F are then taken as e (a - 1) and e
(a - l)(n - 1), which makes the test more conservative for
< 1.00. There are somewhat different forms of 8 that may be
called the Box correction, the Geisser-Greenhouse epsilon,
or the Huynh-Feldt epsilon.

3. Conduct focused comparisons between pairs of condition
means instead of the omnibus comparison This implies that
each contrast has its own specialized error term (i.e., it is not
MSAxS f°r the whole design). Because these unique error terms
are based on data from only two conditions, the sphericity
requirement does not apply.

4. Analyze data from all levels of the factor with multivariate
analysis of variance (MANOVA), which also does not assume
sphericity. In this approach, difference scores between adjacent
levels of factor A are analyzed as multiple, correlated outcome
variables (e.g., Stevens, 1992, chap. 13).

5. Use the statistical resampling method of bootstrapping to gen-
erate an empirical F test for repeated measures data. (Boot-
strapping as an alternative to traditional statistical tests is
discussed in chapter 9, this volume). In a recent Monte Carlo
analysis, Berkovits, Hancock, and Nevitt (2000) found that
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this method is relatively robust against violation of the spheric-
ity assumption.

All of these options are concerned in large part with the estimation
of accurate p values in correlated designs. Considering the limitations of p
values outlined in the next chapter, perhaps an even better choice is to move
away from traditional statistical tests to model-fitting techniques suitable for
repeated-measures data, such as structural equation modeling or hierarchical
linear modeling, among others. This point is elaborated later.

Analysis of Variance as Multiple Regression

All forms of ANOVA are nothing more than special cases of multiple
regression (MR), which itself is just an extension of bivariate regression
that analyzes one or more predictors of a continuous dependent variable.
These predictors can be either continuous or categorical variables. Categori-
cal predictors are represented in regression equations with special codes that
each correspond to a single df contrast (i.e., a focused comparison) between
the levels of that predictor. It is also possible in MR to estimate interaction
effects between continuous or categorical predictors. In theory, one needs
only a software program for MR to conduct any kind of ANOVA. The
advantage of doing so is that the output of regression programs usually
includes correlations, partial correlations, or standardized regression coeffi-
cients (beta weights), all of which are standardized measures of effect size.
In contrast, software programs for ANOVA may print only source tables,
and the F and p values in these tables measure both effect size and sample
size (e.g., Table 2.6). The disadvantage of using MR programs instead of
ANOVA programs is that the coding required for some kinds of designs,
especially ones with repeated-measures factors, can become complicated. In
contrast, ANOVA programs are typically easier to use because no special
coding of the factors is required by the user. Fortunately, there are some
straightforward ways to extract information about effect size from ANOVA
source tables that are demonstrated in later chapters.

Entire books are written about the relation between ANOVA and
MR (e.g., Keppel & Zedeck, 1989), so it is not possible to deal with this issue
in substantive detail. However, readers should be aware of this alternative to
using ANOVA to analyze means and estimate effect size.

X2 TEST OF ASSOCIATION

Whether there is a statistical relation between two categorical variables
is the question addressed by the %2 test of association. A two-way contingency
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TABLE 2.9
Results of the Chi-Square Test of Association for the Same Proportions

at Different Group Sizes

Outcome

Observed Frequencies

Group

Treatment
Control
Total

Treatment
Control
Total

n

40
40
80

80
80

160

Recovered

24
16
40

48
32
80

Not recovered

16
24
40

n = 80
32
48
80

Recovery rate

.60

.40

.60

.40

xMD

3.20a

6.40b

ap=.074. bp=.011.

table summarizes the data analyzed by this test. Presented in the top half
part of Table 2.9 is a 2 X 2 cross-tabulation that shows the frequencies of
treatment and control cases (n = 40 each) that either recovered or did not
recover. A total of 24 cases in the treatment group recovered, or 60%.
Among control cases, 16 cases recovered, or 40%. The recovery rate among
treated cases is thus 20% higher than among untreated cases.

The %2 test of association for two-way contingency tables takes the form

(f _f \2

^V^ <234>1 = 1 j = 1 Je,j

where the degrees of freedom are the product of the number of rows (r)
minus one and the number of columns (c) minus one, /0 is the observed

frequency for the cell in the ith row and jth column, and /e.. is the expected

frequency for the same cell under the nil hypothesis that the two variables
are unrelated. There is a quick way to derive by hand the value of /e for
any cell: Divide the product of the row and column totals for that cell
by the total number of cases, N. It is that simple. The statistical assumptions
of the % test of association include independence of the observations,
classification of each observation into one and only one category (i.e.,
contingency table cell), and a sample size large enough so that the
minimum expected value across the cells is about 5 for tables with more
than a single degree of freedom or about 10 for tables with a single degree
of freedom.

For the 2x2 cross-tabulation in the top half of Table 2.9, the expected
frequency for each cell is/e = (40 X 40)/80 = 20. This shows a pattern where
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outcome is unrelated to treatment status because the expected recovery rate
is the same for both groups, 50% (20/40). After application of this equation,
the results are %2 (1) = 3.20, p = .074, so the nil hypothesis that group
membership and recovery status are unrelated is not rejected at the .05
level. The effect of increasing the group size but keeping all else constant
on the X2 test is demonstrated in the bottom part of Table 2.9. Reported
there are results of the /2 test for the same proportions but a larger group
size, n = 80. The null hypothesis is now rejected at the .05 level—%2 (1) =
6.40, f> = .011—even though the improvement in recovery rate for treated
versus control cases is unchanged, 20%.

Other common applications of the %2 test not described include a
goodness-of-fit test for categorical variables and a test for correlated propor-
tions, among others. All tests just mentioned are also sensitive to sample size.

STATISTICAL TESTS AND REPLICATION

Statistical tests provide a framework for making a dichotomous
decision—reject or fail to reject HQ—about sample results in the face of
uncertainty. This uncertainty is sampling error, which is estimated in some
way by essentially all statistical tests. Of course, any decision based on a
statistical test may not be correct (e.g., a Type I or Type II error). In any
science, though, it is replication that is the ultimate arbiter: No matter how
intriguing a result from a single study, it must be replicated before it can
be taken seriously. Replication also is the ultimate way to deal with the
problem of sampling error. Indeed, statistical tests are unnecessary with
sufficient replication.

There is a much stronger tradition of replication in the natural sciences
than in the social sciences. It is also true that statistical tests are infrequently
used in the natural sciences. Whether this association is causal is a matter
of debate. Some authors argue that the widespread use of statistical tests in
the social sciences works against the development of a stronger appreciation
for replication (e.g., Kmetz, 2000; F. Schmidt & Hunter, 1997). There are
probably other factors that contribute to the difference in emphasis on
replication across the social and natural sciences (Kupfersmid, 1988), but the
possibility that statistical tests is one of them warrants careful consideration.
Replication and meta-analysis as a method for research synthesis are consid-
ered in chapter 8.

CONCLUSION

Outlined in this chapter is a basic vocabulary for comparative studies
and the logic of interval estimation for statistics with simple distributions,
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such as means, versus those with complex distributions, such as some effect
size indexes. Confidence intervals for the former are constructed with central
test statistics, but the latter may require noncentral test statistics. Special
software tools are also typically needed for noncentral confidence intervals.
A confidence interval based on a statistic sets a reasonable lower and upper
bounds for the corresponding population parameter, but there is no guarantee
that the value of the parameter is included in a particular confidence interval.
The essential logic of statistical tests in general and characteristics of the
t and F tests for means and the %2 test for two-way contingency tables in
particular was also reviewed. Any statistical test measures both effect size
and sample size. This is why neither the values of test statistics or their
associated probabilities say much useful about effect size. Additional limita-
tions of statistical tests are considered in the next chapter.
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