Σomme & Πroduit

Soit I un ensemble fini et x une application de I dans \mathbf{R} ou \mathbf{C} qui à chaque élément i de I fait correspondre un réel (ou un complexe) x_i . I est appelé <u>famille d'indices</u>, x <u>variable indicée ou indexée par i et i est l'<u>indice</u>. De façon générale les éléments de I sont des entiers naturels successifs $I=\{1,2,3,...,n\}$ ou $I=\{5,6,7,...,n\}$ ou encore $I=\{p,p+1,p+2,...,n\}$. Dans toute la suite on prendra $I=\{1,2,3,...,n\}$, $J=\{1,2,3,...,p\}$ et $(x_i)_{i\in I}$ (ou $(x_i)_{1\leq i\leq n}$) et $(y_j)_{j\in J}$ (ou $(y_j)_{1\leq j\leq p}$) sont deux familles de nombres réels (ou complexes). λ et μ sont deux réels (ou complexes) fixés.</u>

Définition : On définit $\sigma_n = \sum_{i=1}^{i=n} x_i = \sum_{1 \le i \le n} x_i = \sum_{i \in I} x_i$ par : $\sigma_0 = 0$ et $\sigma_{k+1} = \sigma_k + x_{k+1}$ pour $k \in [[0 \ n-1]]$.

De même on définit $\pi_n = \prod_{i=1}^{i=n} x_i = \prod_{1 \le i \le n} x_i = \prod_{i \in I} x_i$ par : $\pi_0 = 1$ et $\pi_{k+1} = \pi_k \times x_{k+1}$ pour $k \in [[0 \ n-1]]$.

Partie I:

1) Justifier que:

a)
$$\sigma_n = x_1 + x_2 + ... + x_n$$
 b) $\sigma_n = \sum_{i=1}^{i=n} x_i = \sum_{k=1}^{k=n} x_k = \sum_{n=1}^{p=n} x_n$

2) Calculer:
$$\sum_{i=1}^{i=5} x_i$$
 pour $x_i = i$ $\sum_{k=1}^{k=n} x_k$ pour $x_k = 3$ $\sum_{p=3}^{p=11} x_p$ pour $x_p = p^2$

3) Justifier que :
$$\sum_{i=1}^{i=n} x_i = \sum_{i=0}^{i=n-1} x_{i+1} = \sum_{i=2}^{n+1} x_{i-1} = \sum_{i=0}^{n-1} x_{n-i}$$

4) A-t-on
$$\sum_{i=1}^{i=n} x_i y_i = \sum_{i=1}^{i=n} x_i \sum_{i=1}^{n} y_i$$
? A-t-on $\sum_{i=1}^{i=n} \frac{1}{x_i} = \frac{1}{\sum_{i=1}^{i=n} x_i}$?

5) Justifier que:

a)
$$\sum_{i=1}^{i=n} (x_i + y_i) = \sum_{i=1}^{i=n} x_i + \sum_{i=1}^{i=n} y_i$$
 b) $\sum_{i=1}^{i=n} \lambda x_i = \lambda \sum_{i=1}^{i=n} x_i$

6) Sachant que :
$$\sum_{i=1}^{i=n} x_i = X$$
 et $\sum_{i=1}^{i=n} y_i = Y$ calculer

$$\sum_{i=1}^{i=n} (x_i - \lambda) \quad \sum_{i=1}^{i=n} (5x_i + 3y_i) \quad \sum_{i=1}^{i=n} (\lambda(x_i - 2) + \mu(y_i + \mu))$$

7) Compléter: **a)**
$$\sum_{i=0}^{i=n} (x^{n-i}y^i) = x^n + y^n + \sum_{i=0}^{i=n} (x^{n-i}y^i) = \sum_{i=0}^{i=n-5} x^i y^i + \sum_{i=0}^{n} (x^{n-i}y^i) = \sum_{i=0}^{i=n-5} x^i y^i + \sum_{i=0}^{n} (x^{n-i}y^i) = \sum_{i=0}^{n-1} (x^{n-i}y^i) = \sum_{i=0}^{n-i} (x^{n-i}y^i) = \sum_{i=0}^{n-1} (x^{n-i}y^i) = \sum_{i=0}^{n-1} (x^{n-i}y^i) = \sum_{i=0}^{n-1} (x^{n-i}y^i) = \sum_{i=0}^{n-1} (x^{n-i}$$

8) On pose :
$$\frac{1}{n} \sum_{i=1}^{i=n} x_i = m$$
 (comment désigne-t-on ce nombre ?) Calculer $\sum_{i=1}^{i=n} \left[x_i - \sum_{j=1}^{i=n} \frac{x_j}{n} \right]$

Connaissiez-vous cette propriété ? Enoncez la en une phrase simple.

9) On considère une « liste double » $(x_i; p_i)_{1 \le i \le k}$ où x_i sont les notes obtenues par un étudiant à la matière i et y_i sont les coefficients de cette matière i. On pose : $\sum_{i=k}^{i=k} p_i = P$ et $m = \frac{1}{P} \sum_{i=k}^{i=k} p_i x_i$

Que vaut $\sum_{i=1}^{i=k} p_i(x_i - m)$? Connaissiez-vous cette propriété? Enoncez la en une phrase simple.

10) On pose : $\sigma^2 = \frac{1}{P} \sum_{i=1}^{i=k} p_i (x_i - m)^2$ comment désigne-t-on ce nombre ? Montrer que

$$\sigma^2 = \frac{1}{P} \sum_{i=1}^{i=k} p_i x_i^2 - m^2$$
 Connaissiez-vous ce théorème ?

11) On considère une « liste double » $(x_i; y_i)_{1 \le i \le k}$ où x_i sont les notes obtenues par un étudiant X à la matière i et y_i sont les notes obtenues par un étudiant Y à la même matière i. On pose :

$$\frac{1}{n} \sum_{i=1}^{i=n} x_i = m_x \quad \frac{1}{n} \sum_{i=1}^{i=n} y_i = m_y \text{ et cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{i=n} (x_i - m_x)(y_i - m_y) \text{ comment désigne-t-on ce}$$

nombre ? Montrer que $cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - m_x m_y$ Connaissiez-vous ce théorème ?

Partie II:

1) Justifier que:

a)
$$\pi_n = x_1 \times x_2 \times ... \times x_n$$
. **b)** $\pi_n = \prod_{i=1}^{i=n} x_i = \prod_{k=1}^{k=n} x_k = \prod_{n=1}^{p=n} x_n$

2) Calculer:
$$\prod_{i=1}^{n} x_i$$
 pour $x_i = i$ $\prod_{k=1}^{k=n} x_k$ pour $x_k = 3$ $\prod_{p=3}^{p=11} x_p$ pour $x_p = p^2$

3) Justifier que :
$$\prod_{i=1}^{i=n} x_i = \prod_{i=0}^{i=n-1} x_{i+1} = \prod_{i=2}^{n+1} x_{i-1} = \prod_{i=0}^{n-1} x_{n-i}$$

a)
$$\prod_{i=1}^{i=n} x_i y_i = \prod_{i=1}^{i=n} x_i \prod_{i=1}^{i=n} y_i$$
? **b)** $\prod_{i=1}^{i=n} \frac{1}{x_i} = \frac{1}{\prod_{i=1}^{i=n} x_i}$?

c)
$$\prod_{i=1}^{i=n} (x_i + y_i) = \prod_{i=1}^{i=n} x_i + \prod_{i=1}^{i=n} y_i$$
 d) $\prod_{i=1}^{i=n} (x_i)^p = \left(\prod_{i=1}^{i=n} x_i\right)^p$

5) Compléter:

a)
$$\prod_{i=1}^{i=n} \lambda x_i = \lambda^2 \prod_{i=1}^{i=n} x_i$$
 b) $\prod_{i=1}^{i=n} (x_i - x) \prod_{i=1}^{i=n} (-x_i - x) = ? \prod_{i=1}^{i=n} (?-?)$

6) Montrer que :
$$\prod_{i=1}^{i=2n} i = \prod_{i=1}^{i=n} (2i-1) \prod_{i=1}^{i=n} 2i$$
 Ecrire cette égalité en termes de factoriel.

Partie III:

Soient $I=\{1, 2, ..., n\}$ et $J=\{1, 2, ..., p\}$ deux familles d'indices on note $(x_{ij})_{i \in I}$ (ou $(x_{ij})_{1 \le i \le n}$ $1 \le j \le p$) une variable indexée conjointement par I et J. On représente les x_{ij} par un « tableau » à n lignes (indexées par I) et à p colonnes (indexées par J).

1) Dresser le tableau $X=(x_{ij})_{i\in I}$ dans les cas suivants:

a)
$$I = \{1, 2, 3\}$$
 et $J = \{1, 2, 3, 4\}$ et $x_{ij} = 2i - j$ **b)** $I = \{1, 2, 3\} = J$ et $x_{ij} = 1/(i + j - 1)$

b)
$$I = \{1, 2, 3\} = J \text{ et } x_{ij} = 1/(i+j-1)$$

c)
$$I = \{1, 2, 3, 4\} = J$$
 et $x_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$

c)
$$I = \{1, 2, 3, 4\} = J$$
 et $x_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$ **b**) $I = \{1, 2, 3, 4\} = J$ et $x_{ij} = \begin{cases} a \text{ si } i = j \\ b \text{ si } i > j \\ c \text{ sinon} \end{cases}$

2) Soit $X=(x_{ij})_{i\in I}$ un tableau « carré » $I=J=\{1, 2, ..., n\}$. Matérialiser sur ce tableau les éléments suivants: $x_{ii} i \in I$; $x_{3j} j \in J$; $x_{ii} i > j$; $x_{n-i+1,i} i \in I$; $\sum_{i=1}^{l=n} x_{ii}$ $\sum_{i \in I} x_{i3}$ $\prod_{i=1}^{n} x_{2j}$ $\prod_{i=1}^{n} x_{n-i+1,i}$

3) Quelle signification donneriez-vous à $\sum_{i=n,j=p}^{i=n,j=p} x_{ij}$?

4) A-t-on
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_{ij} \right) = \sum_{j=1}^{p} \left(\sum_{i=1}^{n} x_{ij} \right)$$
?

- 5) Dans le cas où I=J caractériser (sur le tableau) $\sum_{1 \le i < j \le n} x_{ij}$
- 6) Soient $I=\{1, 2, ..., n\}$ et $J=\{1, 2, ..., p\}$ deux familles d'indices. On considère deux tableaux $X=(x_{ij})_{i\in I}$ et $Y=(y_{ij})_{i\in I}$.La <u>somme</u> de X et Y est un tableau $Z=X\oplus Y=(z_{ij})_{i\in I}$ où $\forall i\in I$ et $\forall j\in J$ $z_{ii}=x_{ii}+y_{ii}$.
 - a) Montrer que : $X \oplus Y = Y \oplus X$ (l'addition est commutative)
 - **b)** Montrer que : $X \oplus (Y \oplus Z) = (X \oplus Y) \oplus Z$ (l'addition est associative)
- c) Existe-t-il un tableau T tel que : $X \oplus T = T \oplus X = X$? (existence d'un <u>élément neutre</u>). Quelle notation suggériez-vous pour T?
- **d**) Existe-t-il un tableau U tel que : $X \oplus U = U \oplus X = T$? (existence d'un opposé) (T étant le tableau de la question précédente). Quelle notation suggériez-vous pour U?
- 7) Soient $I=\{1, 2, ..., n\}$ et $J=\{1, 2, ..., p\}$ deux familles d'indices. On considère deux tableaux $X=(x_{ij})_{i\in I}$ et $Y=(y_{ij})_{i\in I}$. Le <u>transposé</u> de X est un tableau $Z=^tX=(z_{ij})_{i\in I}$ où $\forall i\in I$ et $\forall j\in J$ $z_{ii}=x_{ii}$.
 - **a)** Montrer que : ${}^{t}(X \oplus Y) = {}^{t}X \oplus {}^{t}Y$
- **b**) On suppose n=p. Que peut-on dire de X si ${}^{t}X=X$? Que peut-on dire de X si ${}^{t}X=-X$? (-X au sens de 6-d)
- 8) Soient $I=\{1, 2, ..., n\}=J$. On considère deux tableaux « carrés » $X=(x_{ij})_{i\in I}$ et $Y=(y_{ij})_{i\in I}$ $j\in I$. La <u>trace</u> de *X* est le nombre $tr(X) = \sum_{i=1}^{t=n} x_{ii}$
 - a) Montrer que : $tr(X \oplus Y) = trX + trY$
 - **b)** Montrer que : $tr(^tX) = tr(X)$

Partie IV:

Soient $I=\{1, 2, ..., n\}$ et $J=\{1, 2, ..., p\}$ deux familles d'indices. On considère le tableau donnant les notes $(x_{ii})_{i \in I}$ de l'étudiant i à la matière j.

- 1) Que représente $\frac{1}{p} \sum_{i=1}^{p} x_{i_0 j}$ $i_0 fix \acute{e}$?
- 2) Que représente $\frac{1}{n}\sum_{i=1}^{n}x_{ij_0}$ $j_0fixé$?
- 3) Donner trois formules permettant de calculer la moyenne de toutes les notes.
- **4)** On considère la liste $(c_i)_{i \in J}$ où chaque c_i est le coefficient de la matière j.
 - a) Donner une formule permettant de calculer la moyenne pondérée de l'étudiant i_0 .
 - b) Présenter les résultats sous la forme : (notes)(coefficients)=(moyennes des étudiants)

r les resultats sous la forme : (notes)(coefficients)
$$\begin{pmatrix}
x_{11} & \vdots & & & \\
\vdots & & & & \\
\vdots & & & & \\
x_{n1} & \vdots & & & \\
x_{np} & \vdots & & & \\
\vdots & & & & \\
x_{np} & \vdots &$$

c) En déduire la moyenne pondérée de tous les étudiants.