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TRACELINK: A MODEL OF CONSOLIDATION 
AND AMNESIA
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A connectionist model is presented, the TraceLink model, that implements an autonomous “off-line”
consolidation process. The model consists of three subsystems: (1) a trace system (neocortex),
(2) a link system (hippocampus and adjacent regions), and (3) a modulatory system (basal forebrain
and other areas). The model is able to account for many of the characteristics of anterograde and
retrograde amnesia, including Ribot gradients, transient global amnesia, patterns of shrinkage of
retrograde amnesia, and correlations between anterograde and retrograde amnesia or the absence
thereof (e.g., in isolated retrograde amnesia). In addition, it produces normal forgetting curves and
can exhibit permastore. It also offers an explanation for the advantages of learning under high arousal
for long-term retention.
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INTRODUCTION

Where are memories located? Although new
imaging techniques allow visualisation of brain
activity, memory loss after brain damage is still
a vital source of evidence as to where memory
resides in the brain. There are two kinds of
amnesia, with the division between the two being
along the time axis. The onset of the amnesia is
taken as the point of reference. Any memory loss
before that moment is defined as retrograde
amnesia, whereas any memories not acquired or
not retained thereafter fall under anterograde
amnesia (at least, if they would have been acquired
and retained under normal circumstances). Retro-
grade amnesia is thus the loss of memories that

were accessible before the lesion, while antero-
grade amnesia reflects an inability to form or
retain new memories.

A major characteristic of memory loss after
brain damage is Ribot’s Law of retrograde amnesia
(Ribot, 1881). It states that there is a time-gradient
in retrograde amnesia, such that recent memories
are more likely to be lost. In the past century, this
time gradient, usually referred to as the Ribot gra-
dient, has been reported time and again. Not all
studies of retrograde amnesia report the Ribot gra-
dient, and the extent and length of the gradient can
vary considerably from case to case. However, the
sheer number of studies in which a Ribot has been
found suggest that the Ribot gradient is not a pat-
tern restricted to one category of patients or to one



type of memory test (A. S. Brown, 2002; Meeter &
Murre, in press; Squire, 1992).

The Ribot gradient is all the more striking in
the light of normal retention. Since Ebbinghaus, it
has been known that memories typically show a
monotonically decreasing retention curve, which
holds under a large number of conditions (Baddeley,
1990; Bahrick, Bahrick, & Wittlinger, 1975;
Ebbinghaus, 1885; Rubin & Wenzel, 1996;
Slamecka & McElree, 1983). A theory of amnesia
thus has to explain—or at least allow for—the fact
that we find opposite temporal gradients in nor-
mal and disturbed memory. In normal subjects
recent memories are retrieved better than old ones
(the forgetting curve), whereas with severe brain
damage remote memories tend to be preserved
better then recent ones (Ribot’s Law).

Many authors (e.g., Alvarez & Squire, 1994;
McClelland, McNaughton, & O’Reilly, 1995;
Milner, 1989; Squire, 1992; Squire, Cohen, &
Nadel, 1984) have explained the paradox by
assuming two processes that influence trace
strength. New experiences are first stored in the
hippocampus, a relatively fast process that leads to
near-immediate prominence of novel episodic
memories. Thereafter, a second, relatively slow
process makes some memories more persistent
with time: During “off-line” periods such as sleep,
these memories become reactivated and are trans-
ferred to the neocortex. This process of memory
transfer has been referred to as “memory consoli-
dation.” The above explanation has fallen on such
fertile grounds that Nadel and Moscovitch (1997)
refer to it as the “Standard View” of amnesia.

The standard view has been implemented in
several connectionist models, one of which is
the TraceLink model (Murre, 1994, 1996, 1997).
Although retrograde amnesia and its gradient
were successfully simulated in several models,
none has been applied to amnesia in its diverse
forms, and few of the implications for remote mem-
ory have been thoroughly studied. Here, we will
do just that. The TraceLink model will be applied
to a number of amnesic conditions, to forgetting,
and to variance in memory strength. This will
allow a thorough evaluation of consolidation and its
ramifications. Before we discuss amnesia, however,

we will present the architecture of TraceLink,
starting with two neurobiological concepts that
inform our model.

Hierarchies in the brain

Episodes that are stored in memory consist of a
relatively random collection of facts, sensations,
verbal descriptions, thoughts, and other experi-
ences, and have visual, auditory, tactile aspects, and
so on. Such episodes are, according to virtually
all theories of memory, stored as a collection of
features (corresponding to aspects of the episode)
that are associated during the learning process.
Given what is known about the localisation of
functions in the brain, it seems plausible that these
neural activation patterns will be distributed over
many brain areas that are at a sizeable distance
from one another, e.g., areas that code for different
modalities (Cabeza & Nyberg, 2000). To store an
episode, one would thus have to connect aspects of
the episode coded for at different places in the
brain, which requires long-distance cortico-cortical
connections. Those connections are known to exist
only sparsely, however (Abeles, 1991; Braitenberg &
Schüz, 1991). An individual cortical neuron is typ-
ically connected to 5000 others and most of these
will be located in the direct neighbourhood
(Murre & Sturdy, 1995).

A hierarchical connectivity structure with
dense bidirectional connections may solve this
problem, analogous to the way that telephone net-
works are designed to deal with the same issue.
Local telephone connections (i.e., cables) are dense.
They hook up to local area networks, which in
turn are connected to national and international
networks. There is ample evidence that the cortex
is structured in such a hierarchical fashion, and
that the hippocampus is a top-level structure. In
the rat, the hippocampus receives inputs from
nearly the entire neocortex via the entorhinal,
perirhinal, and postrhinal cortices (Burwell, 2000;
Witter, Wouterlood, Naber, & Van Haeften, 2000).
These connections are largely reciprocal. Further
evidence for this hierarchical connection scheme
derives from a study by Felleman and Van Essen
(1991) in the macaque monkey. They investigated
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connectivity patterns between 32 visual areas and
estimated that only 40% of the possible area-to-
area connections exist. Felleman and Van Essen
(1991) arrived at a visual hierarchy including
14 levels of cortical processing with the entorhinal
cortex and hippocampus at the top. For the mouse,
a similar hierarchical connectivity was found
(Braitenberg & Schüz, 1991; Greilich, 1984).
TraceLink assumes that there is such a hierarchy.
It assumes that there are areas in the brain with
high connectivity that have as a principal function
to link other areas of the brain.

Modulation

A further consideration in the development of the
TraceLink model is the fact that learning is not
equally fast at all times. Indeed, it should not be, as
some things are worth learning and others are not.
The problem of real-life or real-time learning is
well formulated by Carpenter and Grossberg
(1988) in what they call the “stability-plasticity
dilemma”: “How can a learning system be designed
to remain plastic, or adaptive, in response to signif-
icant events and yet remain stable in response to
irrelevant events?” (p.77). They have argued that
any system that wants to perform significant real-
time learning must solve this problem. If a system
does not, and instead learns all events with equal
intensity, its memory will soon be cluttered with a
large collection of irrelevant facts.

The stability-plasticity dilemma has been
addressed by relatively few researchers (Carpenter &
Grossberg, 1988; Grossberg, 1976, 1987; Hasselmo,
1994; Hasselmo, Bodelón, & Wyble, 2002; Meeter,
Talamini, & Murre, in press; Murre, 1992). Their
solutions are based in part on monitoring nonspe-
cific aspects of stimuli, such as resonance, compe-
tition, and novelty, using these measures to control
learning processes (usually, such models tackle cat-
egorisation, which is not the aim of TraceLink).
Other more psychological factors also seem to
influence how strongly a memory is encoded in
memory. A number of concepts have become asso-
ciated with this question, among which are atten-
tion, arousal, vigilance, wakefulness, emotional
relevance, novelty, motivation, and drive. These

terms, though overlapping, serve as a broad outline
of general modulatory factors and plasticity-
inducing circumstances. In the brain, several cen-
tral mechanisms have been proposed that modulate
learning, for example an amygdaloid system based
on norepinephrine (McGaugh, 1990) and a cholin-
ergic system arising from the basal forebrain
(Hasselmo, 1995).

Although the details of the modulation of
learning are outside the scope of TraceLink, we
propose that there are systems with such func-
tions. In the model, regulating plasticity is the
function of a separate module called the modula-
tory system.

The TraceLink model

The hierarchical structure of the brain and the
need for modulation of learning inform a model
containing three main components: (1) a neocorti-
cal “trace” system, (2) a hippocampal “link” system,
and (3) a modulatory system.

1. Normally, the greater part of a memory trace
will be stored in the connections of the trace sys-
tem. The trace system represents roughly the neo-
cortical basis of memories. The input to the trace
system originates in sensory areas. We assume
considerable preprocessing in these areas, which
themselves do not form part of the model.
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Figure 1. Overview of the TraceLink model, showing the
link system, the trace system, and the modulatory system
(indicated by a �W sign, symbolising control of learning
rate on the connection weights in the system). Only a few
nodes and a few connections have been drawn in order to
prevent clutter.



Similarly, output or motor areas are not included.
We identify the trace system with association areas
in the neocortex, such as the temporal lobe neo-
cortex (Miyashita, 1993) and posterior parietal
cortex (Izquierdo et al., 1997).

2. It is the link system’s function to connect
remote trace elements (i.e., those without direct
cortico-cortical connections). The link system has
a much smaller number of elements than the trace
system. Among other things, this implies that link
elements are more likely to be reassigned from an
old representation to a new, thus causing interfer-
ence by new learning. Link elements are connected
to each other and to a random subset of the trace
elements. Connections involving link elements are
much more plastic than trace-to-trace connec-
tions. This is illustrated in Figure 1 through the
close attachment of the link system to the modula-
tory system. The link system can be identified
with what others have called the hippocampal
complex (Nadel & Moscovitch, 1997) or the
medial temporal lobe (Alvarez & Squire, 1994):
the hippocampal region (hippocampus proper,
dentate gyrus, subiculum) and adjacent parahip-
pocampal structures (principally the entorhinal,
parahippocampal, and perirhinal cortices).

3. Activation of the modulatory system causes
increased plasticity of the link system. The modu-
latory system may be activated through central
states such as arousal and attention, and it can be
identified with the basal forebrain, the amygdala,
and other subcortical centres that control plasticity
in the brain. A structure that certainly also plays a
role in the modulatory system is the hippocampus,
which many studies have implicated in novelty
processing ( Johnson & Moberg, 1980; Knight &
Nakada, 1998; Montag-Sallaz, Welzl, Kuhl,
Montag, & Schachner, 1999; Mumby, Gaskin,
Glenn, Schramek, & Lehmann, 2002). The hip-
pocampus thus plays a double role in the TraceLink
model: It is part of the link system, but it is also
involved in regulating its own plasticity.

Although we do not here explore modulation
in great detail, several models have suggested ways
in which modulatory systems may work in the
brain (Doya, Dayan, & Hasselmo, 2002; Hasselmo,
Schnell, & Barkai, 1995; Hasselmo & Wyble,

1997; Meeter et al., in press). For example, a few
models have explored how the hippocampus may
regulate its own plasticity via a feedback loop with
the medial septum. In these models, a novelty sig-
nal derived from hippocampal processing triggers
the release of acetylcholine in the hippocampus,
upregulating plasticity there (Hasselmo et al.,
1995; Hasselmo & Wyble, 1997; Meeter et al., in
press). Such mechanisms are not implemented in
this version of the model, but can be mimicked by
simply designating certain stimuli as “interesting”
and manually increasing the activation of the
modulatory system whenever they are present.

How the model works

Figure 2 illustrates at a conceptual level how, in
the model, episodic memory traces are formed
under normal circumstances. For the sake of expo-
sition, four stages can be distinguished (these do
not have theoretical value).

Stage 1. Through the sensory and motor chan-
nels a set of trace nodes is activated (filled circles).
This represents an episode to be remembered. The
activated trace nodes have no direct trace-to-trace
connections to each other but they are connected
to a number of link nodes (only two are drawn).
We assume that the mechanisms for local inhibi-
tion, outlined previously, keep the number of
active nodes small.

Stage 2. The trace nodes activate a set of link
nodes. In the current model, these are random sets
of nodes; in a more detailed model, patterns would
consist of the most activated link nodes, with nodes
with less activation being suppressed by inhibitory
processes. This comes down to pattern formation
through self-organisation, as has been implemented
in numerous models of the hippocampal region
(Doya, 2000; Hasselmo et al., 1995; Jensen, Idiart, &
Lisman, 1996; Meeter et al., in press; Norman &
O’Reilly, 2003). The modulatory system becomes
activated (darkness of shading indicates activation
level) and the learning rate increases. As a result of
the increased plasticity, connections between link
and trace nodes are strengthened (shown by a
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thickening of the connections). This can take place
in minutes or seconds.

Stage 3. Prolonged or repeated activation of
the memory trace through the link system will
lead to the gradual formation of trace-to-trace
connections. With subsequent reactivations, the
modulatory system responds with less and less
activation—it gradually habituates to the pattern.

Stage 4. Direct trace-to-trace connections have
become very strong. Link–trace connections have
either decayed or have been reassigned to other
memory traces. The modulatory system shows lit-
tle reaction to the pattern. In short, the memory
trace has become independent of the link system.

Recall is modelled as the retrieval of the whole
trace pattern when part of the trace pattern is
offered as a cue. In the case of a stage 2 memory,
the partial cue will typically activate the link nodes
associated with the pattern, which in turn will
activate the rest of the trace pattern. In the case of
a stage 4 memory, the cue will be able to activate
the rest of the trace pattern directly through strong
trace-to-trace connections.

Consolidation of memories is the transforma-
tion of stage 2 memories into stage 4 memories
through repeated reactivation via the link system
(this proposal is similar to that by Alvarez &
Squire, 1994; McClelland et al., 1995; and others).
The speed of this transformation may vary with
type of material and with many other factors. For
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Figure 2. Four stages in the normal formation of episodic memories in the TraceLink model. Stage 1: A new memory repre-
sentation activates a number of trace elements (shown as filled black circles). Stage 2: Several link elements are activated and
the relevant trace–link connections are strengthened (shown as thicker connections). Also, the modulatory system has been
activated. Stage 3: Weak trace–trace connections are developing. The modulatory system is weakly activated. Stage 4: Strong
trace–trace connections have been formed. Trace–link connections have decayed and the modulatory system does not necessarily
respond to the stimulus.



some memories, consolidation may take a very
long time (up to several decades). The formation
of long-range trace connections is not by direct
synaptic contact. The possibility of long-range
axonal sprouting should not be excluded, but we
think it more likely that these connections are
established via chains of neurons, as outlined, for
example, by Abeles (1991). Establishing a reliable
connection will take repeated exposures to the
desired connection pattern.

What TraceLink shares with previous work

The assumptions incorporated in TraceLink are not
highly original, nor do they have to be: TraceLink
aims to encapsulate and implement in some detail
the main lines of thought about memory, amnesia,
and the brain that can be traced in the neuropsy-
chological literature of the past 50 years.This earlier
theoretical and modelling work has inspired the
TraceLink model (e.g., Eichenbaum, Cohen, Otto, &
Wible, 1992; Marr, 1971; Milner, 1989; Squire,
1992; Squire et al., 1984; Wickelgren, 1974, 1979).
Since the first work on the model (Murre, 1994),
several other models of amnesia have been pub-
lished that focus on the role of the hippocampus
(e.g., Alvarez & Squire, 1994; McClelland et al.,
1995). TraceLink is perhaps most similar to the
model by Alvarez and Squire (1994). The latter
model also uses a hierarchical structure, with a link
system connecting two cortical modules, and
whereby a gradual consolidation process causes a
movement from “cortico-hippocampal” dependence
to a purely “cortico-cortical” basis. This type of con-
solidation process is similar to one we have adopted.

On a conceptual level, TraceLink also shares
many elements with the McClelland et al. (1995)
model. However, their implementation is very dif-
ferent, with a backprop network as their “trace”
system, and their “link” system is implemented as a
probability distribution with which consolidation
trials for old patterns are interleaved with acquisi-
tion trials for new patterns. This implementation
follows quite naturally from their central rationale
for two memory systems. They point out that
purely sequential learning may not lead to useful
internal representations, and that a case can be

made for the necessity of a more interleaved mode
of learning. In particular, newly learned deviant
patterns may disturb already learned representa-
tions. Occasional learning trials for old patterns
counteract this disturbance. There are thus good
reasons for a slow (interleaved) learning process
such as consolidation of long-term memory.

Neuropsychological data to be explained

In the next section we shall illustrate with connec-
tionist simulations how the TraceLink model may
account for normal episodic learning and recall,
and for findings in the literature on amnesia.
Before describing these simulations, we will list
what, in our view, are the main conclusions in the
literature on amnesia that have to be explained by
a comprehensive model of amnesia:

1. Although the exact brain areas involved
remain unclear, damage to certain medial
structures—in particular, the hippocampus, adja-
cent medial temporal lobe structures, and the
medial diencephalons—can cause both retrograde
and anterograde amnesia. The retrograde amnesia
shown by patients suffering such lesions typically
shows a temporal gradient in accordance with
Ribot’s Law (Reed & Squire, 1998; Rempel-
Clower, Zola, Squire, & Amaral, 1996; Squire,
Haist, & Shimamura, 1989).

2. Anterograde and retrograde amnesia are
partially correlated, with the correlation varying
from one patient group to the next (Kopelman,
Wilson, & Baddeley, 1989; Russel & Nathan,
1946; Shimamura & Squire, 1986). Indices of
anterograde amnesia correlate more with retro-
grade amnesia for the periods right before the
lesion than with retrograde amnesia for more
remote periods (Schmidtke & Vollmer, 1997).

3. In patients, substantial anterograde amnesia
is nearly always accompanied by at least some ret-
rograde amnesia. It occurs in complete isolation of
retrograde amnesia, however, after injections of
scopolamine, a cholinergic blocker (Kopelman &
Corn, 1988). This suggests that multiple causes
may underlie anterograde amnesia.

4. Retrograde amnesia for more remote periods,
including isolated retrograde amnesia, appear to be
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caused by neocortical lesions. “Isolated” retrograde
amnesia is not accompanied by anterograde amnesia
(or very little) but always involves at least some
initial anterograde amnesia in the period following
the onset of the lesion (Kapur, 1993).

5. Transient forms of amnesia show that retro-
grade amnesia can involve a retrieval deficit; after
the amnesia has resolved, the patient is typically
able to retrieve most memories that were unavail-
able during the amnesia episode (Cahill & Frith,
1995; Kritchevsky, 1992). The patient is usually
left without memories of the episode itself, which
suggests that transient forms of amnesia also
involve impaired learning.

6. During recovery from retrograde amnesia,
memories from more remote times tend to come
back faster than memories from more recent
times; this is referred to as shrinkage (Russel &
Nathan, 1946; Whitty & Zangwill, 1977).

7. Memory impairments in amnesia are proba-
bly limited to explicit memory: Amnesic patients
show normal or near-normal implicit memory.
Implicit memory seems to involve incremental
learning in neocortical processing areas (Gabrieli,
1998; Schacter, 1992).

SIMULATIONS

Details of the connectionist model

The model used to simulate the findings listed
above consists of two components: the trace sys-
tem and the link system. Since none of the simula-
tions depends on more than a relatively coarse
notion of modulation, we made no attempt
to model the third component of the TraceLink
model, the modulatory system. Instead, its func-
tions are assumed here (see Meeter et al., in press,
for a recent implementation of a modulatory sys-
tem by our group). The trace system is modelled as
a layer of 200 nodes, the link system as a layer of
42 nodes. Both layers have internal connections,
and are connected with one another. Every two
nodes can in principle be connected. As is the case
with a majority of neurons that are involved in
learning in the cortex, nodes only have excitatory

synapses. The nodes model groups of neurons that
are at some distance from each other.

Both layers have binary stochastic nodes that
are “on” or “off ” with a certain likelihood. This
likelihood depends on the balance between excita-
tory input and inhibition. The excitatory input to a
node is the weighted sum of the activation of all
nodes connected to it. From this excitatory input,
inhibition is then subtracted. Inhibition is con-
stantly fine-tuned so as to keep the average num-
ber of active cells in a layer as close to a preset
number (k) as possible. The inhibition mechanism
models the working of inhibitory neurons, which
may have an important function in keeping activ-
ity in their region within bounds (Braitenberg &
Schüz, 1991; Minai & Levy, 1994). Inhibition is
increased when too many nodes are active (i.e.,
more than k), and lowered when too few are (i.e.,
less than k). The number k is set separately for
every layer; consequently inhibition is regulated
separately in every layer.

The weights of excitatory connections are the
locus of learning. Weights can vary between 0 and
1, and are changed in a simple, linear fashion
according to a variant of Hebb’s rule (Hebb, 1949).
This learning rule allows for learning as well as
unlearning as a function of contingent and non-
contingent activity of the nodes. The activation,
inhibition, and learning rules are explained in
detail in Appendix A.

Learning is not equally fast for all connections.
The learning rate—the rate at which changes are
made to the weights—is much lower for the
within-trace connections than for the connections
within the link layer, or between the link layer and
the trace layer. Connections between the trace and
link layers and within the link layer have equal
learning rates. Since nodes model groups of neu-
rons, the connection between two nodes is a func-
tion of both the number of synapses between the
groups of neurons and their average strength.
Although the hippocampus is known to be unusu-
ally plastic (Lopes da Silva, Witter, Boeijinga, &
Lohman, 1990), the higher learning rate in the
connections involving the link layer is primarily
intended to model the higher connectivity in the
regions of the link system (Treves & Rolls, 1994).
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A pattern in the learning set consists of a group
of trace nodes and a group of link nodes, which are
activated when a pattern is presented. Patterns can
overlap in both the trace and the link layer. The
number of nodes in the trace layer and the link
layer that belong to a pattern is equal to the num-
ber of nodes active in the layer in equilibrium (k).
Because patterns are chosen independently of each
other, every two patterns share on average a k/m
proportion of their nodes in a layer, where m is the
number of nodes in the layer. In both layers k is
relatively low compared to m, which has two dis-
tinct consequences: first, that at any time in the
simulations only a few nodes of both layers are
active, and second, that the patterns are sparsely
coded with little overlap.

Because the hippocampal system is much
smaller than the neocortex, the overlap of patterns
is greater in the link system than in the trace sys-
tem. This is merely intended to model the smaller
capacity of the hippocampal region as compared to
the neocortex. In particular, it leads to faster forget-
ting in the link system than in the trace system.
However, this choice of parameters would seem to
put TraceLink into direct conflict with theories
predicated on sparse representations in the hip-
pocampus (McClelland et al., 1995; O’Reilly &
McClelland, 1994; O’Reilly & Rudy, 2000). Some
fields of the hippocampus, notably the dentate
gyrus and to a lesser extent CA1, are indeed known
to exhibit sparsely firing neuron populations
(Amaral, Ishizuka, & Claiborne, 1990). It is less
obvious that the remaining fields of the hippocam-
pus and other regions of the medial temporal lobe
have sparser firing than the neocortex. We chose
not to alter our overlap parameters, however, as this
would have engendered the inclusion of specific
forgetting parameters. In this context, it is note-
worthy that neocortical LTP decays more slowly
than does hippocampal LTP (Trepel & Racine,
1998), and that within the hippocampal region the
dentate gyrus combines extremely sparse firing
with relatively rapidly decaying LTP (e.g.,
Ezrokhi, Zosimovskii, Korshunov, & Markevich,
1999).

The values of what one could call “equilibrium
parameters” are given in Appendix A. The

function of these parameters is to keep the number
of active nodes as close as possible to the equilib-
rium value k, and to prevent wild swings in the
number of active nodes from one iteration to the
next. These parameters only influence the results
in the sense that they make meaningful results
possible; they do not have an effect on the pattern
of findings. Excluding the “equilibrium parame-
ters,” we are left with a few parameters that can
perhaps count as free: the learning rates, and the
proportion k of active nodes in equilibrium in both
layers relative to the size of the layers (see Table 1).
The main findings in the simulations were quite
robust, with the form of most functions staying
the same with many different sets of parameters.
One set of parameter values, that given in Table 1,
was used in all simulations.

Simulation 1: Normal learning 
and recall

Method

We first simulated the normal workings of the
model: normal learning, consolidation, and recall.
This simulation also served as a control for our
simulations of different amnesic states. In it, the
model went through two distinct phases, a learning
phase and a test phase. The learning phase con-
sisted of two alternating subphases, acquisition of a
pattern and consolidation (see Figure 3). During
acquisition, the model learned one new pattern.
This was followed by a period of consolidation,
after which another pattern was acquired. In a sim-
ulation, the model learned a set of 15 or more pat-
terns with interspersed consolidation periods, after
which all the patterns were tested. We replicated
each simulation 200 times.

Patterns consisted of a random 10 trace nodes
and 7 link nodes (1⁄20 th of all trace nodes, and 1⁄6 th
of all link nodes). As patterns were random, on
average every two patterns shared 1⁄6 th of their
link nodes and 1⁄20 th of their trace nodes. Each
pattern was learned for one iteration with the
learning parameter listed in Table 1.

After the acquisition of a pattern, the model
entered a period of consolidation. In a consolidation

MEETER AND MURRE

566 COGNITIVE NEUROPSYCHOLOGY, 2005, 22 (5)



period, three consolidation trials occurred. A sin-
gle trial proceeded as follows: The model was set
to a random pattern, and then allowed to cycle
freely for a fixed number of iterations (150).
Whichever pattern was active at the last iteration

was consolidated. The dynamics of the model thus
selected a pattern to consolidate, with attractors
surfacing that were strong in the combined link
and trace system. Consolidation was done for
eight iterations at a low learning rate (see Table 1;
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Table 1. Parameters in the presented simulations with the TraceLink model

Learning rate during acquisition
Within trace 0.06
Within link and between the layers 0.4
Learning rate during consolidation
Within trace 0.0025
Within link and between the layers 0.0
Total learning during one acquisition
Within trace 0.06 (0.06 * 1 iteration)
Within link and between the layers 0.4 (0.4 * 1 iteration)
Total learning during one consolidation period
Within trace 0.06 (0.0025 * 3 trials of 8 iterations)
Within link and between the layers 0.0
Unlearning rate
In all connections 75% of learning rate
Number of nodes
In trace 200
In link 42
Number of nodes active in equilibrium ka

In trace 10 (1/20th of the nodes)
In link 7 (1/6th of the nodes)

a � number of nodes in one pattern.

Figure 3. Diagram showing the order of events in most simulations. A simulation was divided into a learning phase and a
test phase. The learning phase was subdivided into alternating acquisition periods, in which one pattern was acquired, and
consolidation periods. Consolidation periods consisted of three consolidation trials.



as the activation would wander a little during the
eight iterations, learning for one iteration with a
high learning rate would not have been equivalent
to learning for eight iterations with a low rate).
Because consolidation trials started with random
patterns and the activation rule was stochastic, the
model usually did not settle on the same pattern
for all three consolidation trials. More than one
pattern was thus typically consolidated in a con-
solidation period. Moreover, as the number of
active nodes was not always equal to the equilib-
rium number k, the model could consolidate noisy
patterns, mixtures of patterns, or no pattern at all.

Acquisition of the first two patterns was fol-
lowed by fewer than three consolidation trials so as
not give these patterns too much of a head start:
As there were no previous patterns for the model
to choose, the first patterns were always consoli-
dated in these early consolidation trials. Since the
very first pattern was learned in an “empty brain,”
it is atypical and has been excluded from all analy-
ses and figures showing results.

After learning and consolidation, the model was
subjected to a test phase. Each pattern was tested a
number of times by activating and clamping part of
the pattern in the trace layer (the cue), and letting
the model cycle for 70 iterations. No nodes were
clamped in the link layer. After the model had
gone through the 70 iterations, the active trace
nodes of the pattern that were not part of the cue
were counted.That number, divided by the number
of trace nodes in the pattern not part of the cue,
was used as the measure of performance. Less
crude measures were tried, but did not yield quali-
tatively different results. After each test, the model
was reset, the cue was activated and clamped anew,
and another test was carried out. The scores that
will be reported are thus the average proportions of
trace nodes in a pattern that were not part of the
cue, but were active after 70 iterations in the test.

Results and discussion

In most of the consolidation trials, one relatively
intact pattern was found and consolidated. In the
simulation of normal learning, this was the case in
86% of the consolidation trials. In 9% of the trials

no pattern was found, and in 5% more than one
pattern was active at consolidation (usually two).
Often the pattern consolidated was the one learned
just before the consolidation trial, but it could also
be an older pattern. Figure 4 shows the likelihood
that a given pattern was consolidated at different
times in the experiment. For all patterns, this likeli-
hood was relatively high in the first consolidation
periods after the pattern was learned, and dropped
off when more and more new patterns were learned.

As is clear from Figure 4, the likelihood that a
given pattern was consolidated monotonically
decreases with every new pattern that was learned.
We fitted several functions on how much the first
10 patterns were consolidated at each time step
after learning. A power law decrease fitted best on
the consolidation curve of some patterns, logarith-
mic decrease on others (fits varied from an R2 of
.91 to .97 for power functions and from .92 to .99
for logarithmic functions).

Figure 5 shows the results of the first simulation
(the filled circles). Performance was very high for
the most recent pattern; the older a pattern was, the
lower it scored on the test. The curve was best
approximated by a power function, which explained
93% of the variance. This is in accordance with
data from human subjects: The power function is
often seen as the best approximation of the reten-
tion function for human memory (Anderson &
Schooler, 1991; Rubin & Wenzel, 1996; Wixted &
Ebbesen, 1991).

Figure 5 also shows a chance level in the simu-
lations. Since TraceLink strives for a given number
of active nodes in a layer (parameter k), during
testing there will always be some active nodes that
may or may not belong to the pattern. We deter-
mined the chance level by defining an extra pat-
tern that was not learned, testing this pattern in
the usual way. The figure shows that although for-
getting was substantial, pattern recall remained
well above chance.

These results show the forgetting that occurs
in the model when new patterns are learned.
The mechanism that accounts for forgetting in
TraceLink is interference through overlap of pat-
terns. When a pattern is learned, it is immediately
stored in the link system in a way that enables
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retrieval later on. The cue that is presented in the
trace system during the test can activate the pattern
in the link system, which subsequently activates
the rest of the pattern in the trace system. When a
new pattern overlaps with an old one in node X,
the old pattern is partly unlearned: While new
connections are laid between node X and the other
nodes in the new pattern, the connections from
the old pattern to node X are unlearned. The node
is thus effectively disconnected from the old pat-
tern. The whole pattern is gradually unlearned
when more and more nodes are disconnected from
the pattern due to overlap with newer ones. Since
there is more overlap in the link system than in the
trace system, the link portion of a pattern is lost
relatively rapidly, and the trace portion more
slowly. By the time 15 patterns have been learned,
many nodes in the first pattern have been part of
at least one other pattern and are thus lost for the
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Figure 4. The likelihood that, in 400 replications of simulation 1, a pattern is consolidated in a particular consolidation
period. The abscissa shows the pattern presented for acquisition prior to the given consolidation period. The ordinate shows the
likelihood of every pattern of being consolidated in the trials in that consolidation period. These likelihoods do not always sum
to exactly 100% because in some trials more than one pattern, or none at all, are consolidated (see text).

Figure 5. Results of the basic simulation of normal learn-
ing and forgetting (filled circles), and the simulation of
retrograde amnesia (open squares). Fifteen patterns were
learned; the patterns on the left were the most recently
learned, the patterns on the right are the oldest. The 
first-learned pattern is not shown. Scores are the mean 
proportion of nodes in the trace portion of the pattern that
are active at test and not part of the cue. The continuous
line is a power fit of the normal data series (R2 � .93).



first pattern; on average this is the case for 54% of
its trace nodes and 94% of its link nodes. Since old
patterns decay rapidly in the link system, patterns
in the link system quickly lose their ability to be
activated by a cue in the trace system, or to main-
tain a stable activation of the pattern in the trace
system. During the time that the pattern is still
strong in the link system, however, the pattern
may be consolidated, and its strength continues to
build up in the trace system. This enables retrieval
of the older patterns from the trace layer. An old
pattern may be activated on the basis of a strong
trace representation alone.

Overwriting by subsequent memories seems a
crude explanation for forgetting as compared to
decaying connections, or forgetting through con-
textual cue changes. However, a recent review
suggested that overwriting indeed plays an impor-
tant role in the reversal of long-term potentiation
in the hippocampus (Rosenzweig, Barnes, &
McNaughton, 2002).

As already stated, basic results were found with
many parameter sets. Some parameter sets pro-
duced undesirable side effects, however, such as
sizeable primacy effects in long-term memory.
This occurred because consolidation is imple-
mented in TraceLink as a competitive process.
Strong patterns have a greater likelihood of
becoming active when the model cycles freely dur-
ing a consolidation trial, and are thus more likely
to be consolidated. Since the last pattern is the
strongest in the link layer, it was usually consoli-
dated most often (see Figure 4). However, the
strength of the pattern in the trace layer also
played a role in determining which pattern was
consolidated. If consolidation went too fast, or if
the trace layer was too strong compared to the link
layer, the trace layer tended to determine which
pattern was consolidated. Often one of the early
patterns was then consolidated over and over
again. With every consolidation trial it would
become stronger and thus more likely to be con-
solidated in the next trial. This resulted in a high
performance for the first patterns compared to
later patterns, something that can be termed “run-
away consolidation” (Meeter, 2003a). We avoided
this artifact by choosing the parameter set in such

way that the strength of patterns in the two layers
was balanced.

We also varied learning schedules (scheduling
consolidation periods after more than one patterns
had been acquired). When consolidation occurred
after two or three patterns were acquired, little
change in the results was seen. However, with more
patterns acquired in between consolidation trials,
runaway consolidation again occurred, as the pat-
tern acquired right before consolidation had an
advantage over other patterns in the competition for
consolidation (elsewhere we have suggested reme-
dies for runaway consolidation; Meeter, 2003a).

Simulation 2: long-term retention 
and permastore

Though monotonically decreasing retention curves
have been found with a broad range of time scales,
there is evidence that, after a number of years, for-
getting ceases and recall probability remains sta-
tionary (Bahrick, 1984, 1992; Bahrick et al., 1975;
Conway, Cohen, & Stanhope, 1991). Bahrick has
called this state “permastore.” This phenomenon
has been found, among others, in retention of
high-school Spanish (Bahrick, 1984), memory for
the faces and names of classmates (Bahrick et al.,
1975), and retained knowledge from a college course
in cognitive psychology (Conway et al., 1991).

To test whether the model would develop per-
mastore, we let the model learn more patterns.
Simulation 2 proceeded exactly as simulation 1,
with one difference: In this simulation, the model
acquired not 15 patterns but 20.

Figure 6 shows the results from the permastore
simulation. We fitted a power curve on the first 15
patterns (the number of patterns in the first simu-
lation), and found that it explained 96% of the
variance. If a power curve was fitted on all pat-
terns, the fit decreased to 87%. On the last 10 pat-
terns, however, a flat line fitted very well. The best
fitting regression line (drawn in Figure 6) had a
slope of just �0.0002. The forgetting curve
shown by the model thus reaches an asymptote, at
which forgetting stops and performance does not
further deteriorate. A balance has been reached
between memory decay and memory consolidation:
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The gains of consolidation are balanced by the
forgetting caused by the acquisition of new pat-
terns. This results in a state of permastore, where
patterns remain at a constant level of retrieval
performance. Perhaps permastore is thus not a
state of immutable memory strength, but instead
a dynamic strength in which forgetting is bal-
anced by consolidation.

RETROGRADE AMNESIA

In the TraceLink model, retrograde amnesia can
be modelled by a temporary or persistent loss of
link nodes. This has different effects for recent as
compared to older memories. Recent memory
representations (stage 2 in Figure 2) are dependent
on a functioning link system for their retrieval and
internal coherence. When the link system is dis-
abled, the trace nodes in the pattern lack the sup-
port from the link system and cannot activate the
other trace nodes in the pattern. Remote memories
(stage 4) have developed a supporting trace-to-
trace connectivity structure, and their retrieval is
independent of the link system. We postulate that
this is the main mechanism underlying Ribot’s
Law. With intermediate memories, successful
retrieval after a lesion of the link system will
depend on which link nodes are unavailable and
what trace-to-trace connections have been formed

already (one could speculate that memories within
strongly associated clusters support each other’s
the retrieval, which may explain the occasional
isolated islands of memories preserved in an 
otherwise dense retrograde amnesia).

Simulation 3: Retrograde amnesia 
and the Ribot gradient

The learning phase in the simulation of retrograde
amnesia proceeded as in simulation 1, with normal
acquisition and consolidation of patterns. The
only difference resided in the test: Before the test
the link layer was deactivated to simulate a lesion
in the medial temporal lobe. This meant that the
trace layer was allowed to cycle, while all nodes in
the link layer were inactive.

In the intact model, performance was highest
for the most recent pattern. We obtained the oppo-
site when the model was tested with a deactivated
link layer. Though performance was relatively low
for all patterns, the most recent patterns suffered
more from the deactivation of the link layer than
the oldest patterns (open squares in Figure 5). In
that condition, the most recent patterns do not
score much better than chance. This corresponds
to the Ribot gradient found in patients with retro-
grade amnesia.

One difference between this simulation and a
typical retrograde amnesia study deserves mention-
ing. Our items were all learned with the same
strength, and our control condition shows a steep
forgetting curve. Tests of retrograde amnesia, on
the other hand, are typically constructed so that an
equal number of items from various decades are
answered correctly by normal controls (Mayes,
Downes, McDonald, Rooke, Sagar, & Meudell,
1994; Meeter, 2003b; Sanders & Warrington,
1971). Since one can assume that more informa-
tion from previous decades is forgotten, this equal-
ity of performance for normal controls implies that
the items selected from the various decades differ
in average initial learning strength. To compare
data from the simulations with data from retro-
grade amnesia tests, one might plot the retrograde
amnesia scores as a percentage of the normal con-
trol scores. Inspection of Figure 5 shows that this
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Figure 6. Performance in the permastore simulation.
A power curve was fitted on the most recent 15 patterns.
A straight line was fitted on the oldest 10 patterns.



would make the Ribot gradient much steeper. The
retrograde amnesia score for the most recent pat-
terns is only a small proportion of the normal con-
trol score, whereas the two scores are almost equal
for older patterns.

SHRINKAGE OF RETROGRADE
AMNESIA

Shrinkage refers to the process of recovery from
retrograde amnesia. The term implies that in
recovery from retrograde amnesia, older memo-
ries tend to become available before more recent
memories (though, as mentioned earlier, isolated
islands may become available before certain older
memories; Whitty & Zangwill, 1977). TraceLink
models amnesia that later resolves by a temporary
unavailability of link nodes. This might be caused
by, for example, a shift in the balance of inhibition
and excitation through a lesion or another abnor-
mality, resulting in a suppression of activity in
link structures. Remote memories are unaffected
by this unavailability, but retrieval of recent
memories is impaired. If link nodes do become
available again, several situations are possible. It
may be that synapses on trace–link connections
have deteriorated, meaning that recent memories
havebeen lost. Trace–link connections may
also become available again with little loss of
weights. This last scenario is probable in the
recovery from TGA, which can occur very rapidly
(hours or less). Our simulation of shrinkage con-
centrates on this case; we simulated a TGA attack
and its resolution.

Simulation 4: Transient global 
amnesia (TGA)

Evans, Wilson, Wraight, and Hodges (1993)
observed medial temporal lobe hypoperfusion dur-
ing a transient global amnesia (TGA) attack.
Interpreting the hypoperfusion that Evans et al.
found as a sign of low activity, we simulated TGA by
temporarily suppressing activity in the link layer
through lowering the value of k in the link layer.The

parameter k is the number of nodes that are active at
equilibrium. When it is lowered in a given layer,
fewer nodes will generally be active in that layer.

After 14 patterns had been learned normally, k
was set to zero in the link layer to simulate the
TGA attack. This means that the model will try to
suppress any activity in the link layer. One pattern
was then learned under this simulated TGA, with-
out any link activity. Then the first test occurred:
All patterns were tested while the k parameter was
still set to zero in the link layer. To simulate the
gradual lifting of TGA, k was set to 3 and 5, and
the model was tested a second and third time
respectively. To simulate completely resolved TGA,
k in the link layer was set to its normal level of 7,
and the model learned five more patterns with the
link layer wholly active. At the end of the simula-
tion, the model was tested a fourth and final time,
with k at its normal level.

Figure 7 shows the results for the tests during
simulated TGA, during its resolution, and after
the attack. In the first test, the simulated TGA
resulted in a dense retrograde amnesia, and in a
severe anterograde amnesia for the one pattern
learned during the TGA attack (Figure 7a). There
is also a Ribot gradient in the retrograde amnesia,
as has been found in patients during a TGA
attack (Hodges & Ward, 1989). Figure 7b and
Figure 7c show how, during the resolution of the
simulated TGA, more and more of the old pat-
terns become available. The old patterns rapidly
return to near-normal performance relative to the
more recent ones, and even exceed their normal
level (for comparison the results of simulation 1
are also drawn in the figure). We thus find the
shrinkage of retrograde amnesia that was observed
during recovery of TGA by Hodges and Ward,
in which the amnesia first resolves for the older
memories and only later for the more recent ones.
Figure 7d shows performance on the fourth test,
after the simulated TGA attack has resolved. Per-
formance on all patterns is back to normal, except
for the pattern that has been learned during the
simulated TGA attack: Performance for this pat-
tern is extremely low. This is typical for TGA
patients, who after the attack have dense amnesia
for the period of the TGA itself.
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The TraceLink model is thus able to simulate
reversible amnesia and the shrinking of retrograde
amnesia typically observed when the amnesia lifts.
The mechanism simulated here may explain why
patients after trauma often have an anterograde and
retrograde amnesia that later partly resolves. Their
lesions may upset the balance of activation and
inhibition, and lead to an abnormally low activity
level in link structures. The difficulties caused by
this low level of activity (illustrated by the present
simulation) may add to the memory deficits caused
by the lesions. Though genuine restitution may also
play a role, part of the resolution of amnesia may be
caused by a return to normal activity levels in link
structures. This entails the empirical claim that if
patients suffer from temporary amnesia, one should
be able to detect a pathologically low activity level
within link structures (e.g., within structures of the
medial temporal lobe).

ANTEROGRADE AMNESIA AND 
ITS CORRELATION WITH
RETROGRADE AMNESIA

Anterograde amnesia can have two causes in
TraceLink: (1) a lesion or dysfunction of the link
system, and (2) a lesion or dysfunction of the
modulatory system. These two causes of antero-
grade amnesia have different effects on retrograde
amnesia. When the link system is lesioned, the
anterograde amnesia is accompanied by retro-
grade amnesia. When the modulatory system is
lesioned, however, there is no retrograde amnesia.
The fact that two lesions can lead to anterograde
amnesia, and have different consequences for ret-
rograde amnesia, makes it possible for TraceLink
to explain the correlations between anterograde
and retrograde amnesia observed in different
populations.
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Figure 7. Performance in the simulation of Transient Global Amnesia (TGA). A grey hatched area indicates a period of
TGA. (a) Performance during the attack. The line marked “onset” indicates the onset of the attack. The model shows antero-
grade amnesia for the pattern learned after the onset of the TGA (pattern 1), and temporally graded retrograde amnesia
for the patterns learned before the attack (patterns 2 to 14). (b) Gradual lifting of the TGA; 25% of the link nodes have
become available again. (c) 50% of nodes are available. (d) Perfomance after TGA has lifted and 5 new patterns have been
learned (labelled 1 to 5). There is only amnesia for the pattern learned during the attack; all other amnesia has resolved.



Simulation 5: Anterograde amnesia 
through lesioning the link layer

The first cause of anterograde amnesia in TraceLink
is a lesion to the link system. This can be simulated
by deactivating the link layer, followed by learning
patterns with only the trace layer functioning. We
simulated four degrees of lesioning of the link layer:
of the entire link layer, three quarters of the link
layer, one half of the link layer, and only one quarter
of the link layer. In all simulations, the model
learned 12 patterns before the lesion occurred.
Three more patterns were learned while the link
layer was lesioned, after which the model was tested.

Figure 8 shows the effects of lesioning the link
layer. For comparison, the line of normal forgetting
(from simulation 1) is also drawn. A lesion of the
whole link layer (Figure 8a) caused an extensive
retrograde amnesia with a Ribot gradient, and also a
near-complete anterograde amnesia. Without a
functioning link system, recently learned, not yet
consolidated patterns are lost, and new patterns
cannot form stable representation. These deficits
are attenuated if some link nodes are still available.
Lesioning three quarters of the link nodes (Figure
8b) produced a serious anterograde amnesia, and
retrograde amnesia for a sizeable number of

patterns preceding the lesion. Lesions of one half of
the link layer (Figure 8c) caused a mild to moderate
anterograde amnesia, and just a moderate loss of
existing patterns. A lesion of one quarter of the link
layer (Figure 8d) produced almost no retrograde
amnesia, and only a mild anterograde amnesia.

TraceLink thus predicts a correlation of antero-
grade amnesia and retrograde amnesia when the
cause of the anterograde amnesia is a lesion of the
link system. Also, Ribot gradients only appear in
TraceLink when there is a near-total lesion of the
link system. If the lesion is less than complete, no
absolute Ribot gradient appears, in the sense that
recent memories are worse than equivalent remote
memories. This can be seen as a prediction for the
animal literature, in which equivalent memories can
be used. In patient studies, however, retrograde
amnesia tests are used in which items are of equiva-
lent recall probability. As described above, this
means that remote memories must actually have
been stronger at encoding. Patient data can there-
fore best be compared to the results of the lesioned
model divided by the results of the control simula-
tions. As inspection of Figure 8 will show,TraceLink
therefore still predicts a relative Ribot gradient in
scores on retrograde amnesia tests if link lesions are
sizeable but not complete (75%, 50%).
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Figure 8. Results of the simulation of anterograde amnesia through lesioning of the link layer. In all simulations, the model
learns 12 patterns, labelled 4 to 15, before the lesion occurs. After the lesion (marked by the line labelled “onset”), the model
learns 3 more patterns. (a) Performance after deactivation of all of the link layer; (b) deactivation of 75% of the link layer;
(c) 50% of the link layer; (d) 25% of the link layer. For comparison, the continuous line gives performance of the intact model,
the dashed one of the whole lesion condition.



Moreover, our model predicts that small link
lesions produce mild anterograde amnesia accom-
panied by hardly noticeable retrograde amnesia.
This may explain the deficits of a category of
patients that is usually referred to as “showing iso-
lated anterograde amnesia.” Patients with lesions
limited to field CA1 of the hippocampus tend to
show mild to moderate anterograde amnesia, and
only mild retrograde amnesia for a limited period
before the lesion (Rempel-Clower et al., 1996;
Zola-Morgan, Squire, & Amaral, 1986). This is
similar to the performance of the model when only
one quarter of the link layer is lesioned.

Simulation 6: Anterograde amnesia through
lesioning the modulatory system

Another way anterograde amnesia can occur in the
TraceLink model is by a lesion of the modulatory
system. Since the modulatory system is not imple-
mented in these simulations, we simulated the
effects of such a lesion by a decrease in the plastic-
ity of the link system. The learning rate in the link
layer was, after the lesion, set at a base rate value
equal to the learning rate in the trace layer (see
Table 1). The simulation started with the normal
acquisition and consolidation of 12 patterns. Then
the simulated lesion of the modulatory system was
applied. Three more patterns were presented to
the model after the lesion, after which the model
was tested.

Because the modulatory system in TraceLink
has a role in regulating plasticity during consoli-
dation, it is unclear whether after a lesion of this
system consolidation continues in patients. We
therefore simulated two conditions. In the first
condition, consolidation continued after the
lesioning of the modulatory system; between
acquisition of two patterns, there was a normal
consolidation phase. In the second condition,
there was no more consolidation after the lesion.

Figure 9 shows the effect of lesioning the mod-
ulatory system. For both conditions, the lesion
produced very dense anterograde amnesia, but no
retrograde amnesia. In fact, performance for pat-
terns learned before the lesion was better than in
the simulation of normal forgetting (which is

drawn in the figure for comparison). Comparison
of the two conditions, with and without consoli-
dation after the lesion, shows that improvement in
pattern recall is weaker when there is consolida-
tion after the lesion has occurred. Learning during
consolidation may have an unlearning effect in the
second condition. Nevertheless, the effect is there
in both conditions. It also has a simple explana-
tion. In the normal simulation, the model learns
new patterns that interfere with the older ones,
which induces forgetting and a lower performance
for the older patterns. When the modulatory sys-
tem is lesioned, however, new patterns are learned
only faintly in the link layer, so that these patterns
interfere little with the patterns that are already
engrained in the link layer. Therefore little forget-
ting occurs in the link layer for the patterns
learned before the lesion, and these patterns
remain strong.

TraceLink thus makes the rather counterintuitive
prediction that there is a class of patients who have
dense anterograde amnesia and no retrograde amne-
sia, but instead have better-than-normal memory
for the events in the time right before the lesion.
These would be patients in which the structures
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Figure 9. Results of the simulation of anterograde amnesia
through lesioning of the modulatory system. After 12 patterns
have been learned, the modulatory system was lesioned.
“Control” refers to the control simulation without antero-
grade amnesia (simulation 1). “Consolidation” refers to the
simulation in which the model continued consolidating
patterns after the lesion, “No consolidation” to the simulation
in which that did not occur. After the lesion (marked by the
line labeled “onset”), the model learned 3 more patterns.



that correspond with the modulatory system are
lesioned, but none of those that correspond to the
link system. Up to this moment, no such patient has
been reported in the literature: Every patient with
enduring moderate to severe anterograde amnesia
has at least a short period—sometimes just a few
weeks—of retrograde amnesia. Possibly, lesions
limited to the modulatory system do not occur
because link structures and modulatory system
structures are overlapping. However, the predictions
given here could be tested using scopolamine, a drug
that produces anterograde amnesia without retro-
grade amnesia (though scopolamine would have to
be administered for a longer period than it typically
is) or in a study with experimental animals.

The correlation between retrograde 
and anterograde amnesia

Two mechanisms can lead to anterograde amnesia
in the TraceLink model: a lesion or dysfunction of
the link system, and a lesion or dysfunction of the
modulatory system. Together, these mechanisms
can explain the whole spectrum of anterograde–
retrograde correlations. Loss in the link system, on
the one hand, will cause both retrograde and
anterograde amnesia, and their severity will show a
correlation. Dysfunction of the modulatory system,
on the other hand, makes it hard to form new
representations, but has no effect on the existing
ones.

For lesions limited to structures corresponding
to the link system (such as the parahippocampal
region), TraceLink predicts a strong correlation
between anterograde amnesia and retrograde amne-
sia, and also between the latter two and the size of
the lesion. Diffuse lesions that affect the link, trace,
and modulatory systems equally will show more
variability in the pattern of amnesia, but in general
anterograde and retrograde amnesia would still
be expected to correlate with each other, and with
the severity of the lesion. This may explain the
correlations found with closed-head injury.

If lesions in the modulatory system are dispro-
portionally large, TraceLink predicts a large antero-
grade relative to retrograde amnesia. This may
be the case in Alzheimer’s disease, in which the

hippocampus and basal forebrain is strongly
affected relative to other brain structures (Hyman,
Hoesen, Damasio, & Barnes, 1984; Van Hoesen,
1990; Whitehouse, Price, Struble, Clark, Coyle, &
DeLong, 1982). Indeed, disproportionate antero-
grade amnesia is often a feature of the first stages
of Alzheimer’s disease (Spaan, 2003). From this
analysis it follows that the correlations between
anterograde and retrograde amnesia should be
much lower in patients with Alzheimer’s disease
than in cases of isolated hippocampal damage.

ISOLATED RETROGRADE AMNESIA

Isolated retrograde amnesia, also known as focal
retrograde amnesia (Kapur, 1993), is retrograde
amnesia without accompanying anterograde
amnesia. We simulated it in TraceLink by a rup-
ture or deterioration of the connections between
the link system and the trace system. These con-
nections code for the learned patterns, and when
they are lost, retrograde amnesia occurs. If, after
such loss, it is possible for the system to form new
connections between the trace and link systems,
new memories can still be formed and little
anterograde amnesia need occur. It is unlikely,
however, that immediately after a rupture of old
connections new connections can be formed, as it
may take some time before enough synapses are
available (Robertson & Murre, 1999). This can
explain the initial anterograde amnesia that later
resolves, leaving isolated retrograde amnesia.

Simulation 7: Lesioning the connections
between trace and link

The model initially learned 12 patterns, after
which the connections between the link layer and
the trace layer were severed. To simulate a partial
lesion, all weights of these connections were multi-
plied by a random factor varying with a uniform
distribution function between 0 and .20. After the
lesion, weights were thus only between 0 and 20%
of their initial value (such a connectivity lesion is
appropriate if each connection models a number of
axons, of which a certain percentage is cut). After
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this, the model learned four more patterns. To sim-
ulate the gradual reappearance of connections, the
learning rate for the connections from trace to link
and vice versa was set to half its usual value, and
moved back to its usual value with an exponential
function (1–0.5x, where x is the number of the pat-
tern after the lesion). Finally, the model was tested.

Figure 10 gives the result of the simulation and,
as a comparison, the control simulation. As can be
seen, the lesion resulted in a dramatic loss of pre-
lesion patterns. The first patterns learned after the
lesion were not learned well due to the lower
learning rate in the connections between the trace
and link layer. This corresponds to retrograde
amnesia and anterograde amnesia immediately
after the lesion. For the most recent patterns, per-
formance was normal. The model did not suffer
from any residual anterograde amnesia. The retro-
grade amnesia therefore corresponds to an isolated
retrograde amnesia.

Because cases of isolated retrograde amnesia
are rare, there is currently little knowledge about
the precise neurological basis of the syndrome. It is
thus not yet possible to validate our approach toward
isolated retrograde amnesia against neurological

data. The structures implicated in isolated retro-
grade amnesia, anterior structures of the temporal
lobe such as the parahippocampal region and the
temporal pole, are structures that link the hip-
pocampus with areas in the neocortex. Squire and
Alvarez (1995) favour the theory that with iso-
lated retrograde amnesia the knowledge base itself
is damaged, leading to dense retrograde amnesia,
with flat temporal gradients. There is good evi-
dence that this pattern occurs in some patients
(Kapur, 1993). In other cases, however, the iso-
lated retrograde amnesia shows evidence of a
Ribot gradient (Kapur, 1993). A combination of
Squire’s hypothesis and the one offered above may
be needed to explain all cases of isolated retro-
grade amnesia.

IMPLICIT LEARNING IN AMNESIA

When a new pattern is learned, strong connec-
tions are formed between activated nodes in the
trace system and the link system, and among the
activated nodes in the link system. Some learning
also occurs between the nodes in the trace system,
though at a much lower rate than for the connec-
tions within link or between trace and link. This
learning alone is not enough to sustain a new
memory after a single trial, as was shown in the
simulations of anterograde amnesia.

When trace nodes are activated that already
have connections between them, however, these
existing connections will be strengthened. Such
strengthening of existing memories in the trace
system, as opposed to forming new memories via
the link system, is how TraceLink models implicit
learning.The increment of the connection strengths
in the trace system may also offer a way to model
the acquisition of new skills and of low-level
knowledge in amnesic patients. Every presentation
of a pattern leads to a small increment in the
strength of connections in the trace system. Slowly
these increments may accrue until a strong bond is
formed between the nodes in a pattern. This
approach to implicit learning is similar to the
way that connectionist models have tackled imp-
licit tasks such as gradual build-up of prototypes
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Figure 10. Results of the simulation of isolated retrograde
amnesia. After 12 patterns had been learned, the connec-
tions between the trace layer and the link layer were
disturbed by multiplying them with a number between 0
and 0.20. This is marked by the line labeled “onset.” After
the lesion, patterns were learned with a lower learning
parameter for the connections between trace and link. The
learning parameter moved back to its normal value with an
exponential function (see text for details).



(McClelland & Rumelhart, 1985), artificial gram-
mar learning (Cleeremans & McClelland, 1991),
and repetition priming (Stark & McClelland,
2000).

The link system and modulatory system are
both crucial for the formation of new connections,
but need not be involved in further strengthening
of existing connections. If implicit learning were
dependent on the modulatory system, we would
expect implicit memory tasks to be sensitive to
modulating factors such as arousal, which they are
not (Gold, 1995; Jacoby & Dallas, 1981). The link
system and modulatory system can nevertheless be
active during this process, but this merely implies
that implicit and explicit memories typically form
together in normal subjects ( Jacoby, 1991).

Simulation 8: Implicit learning

Our simulation of implicit learning was kept rela-
tively simple. We simulated implicit learning as
learning without involvement of either the link
layer or the modulatory system. First, 15 patterns
were learned with normal involvement of all sys-
tems in the model to simulate the memory of a
subject who comes into an experiment. After that,
two random patterns were given an additional
simulated implicit learning trial. In this trial, only
the trace portion of the pattern was activated.
Learning occurred within the trace layer, with the
normal trace learning parameter. The model was
tested both before and after the implicit trial. To
generate enough data points per pattern, this sim-
ulation was replicated 1350 times.

Figure 11 shows the results of the simulation,
contrasting performance before and after an item
had received an implicit learning trial. As a com-
parison, the learning of a new pattern via an
implicit learning trial is also shown. The implicit
learning trial had a substantially greater impact for
an already learned pattern than for the new pat-
tern. Recent patterns benefited more than old pat-
terns, though the effect was small. Furthermore,
the impact of the implicit learning trial was greater
in the condition with a deactivated link layer
than in the normal condition. This reflects the fact
that in the normal condition performance is partly

a function of the (unchanging) strength of the pat-
tern in the link layer. However, the most impor-
tant conclusion is that, in TraceLink, implicit
learning benefits both simulated normal controls
and simulated retrograde amnesia patients. With a
failing link system or modulatory system, implicit
learning is still intact because strengthening of
existing connections is independent of the link
system and the modulatory system. Implicit learn-
ing is, therefore, preserved in amnesia.

VARIATIONS IN ENCODING

In all simulations already discussed, the model
learned equivalent, equally strong patterns. Varia-
tions in strength emerged during the simulation
because some patterns had more overlap with the
rest of the patterns than others (all patterns were
random) or because some patterns were chosen
more often in the random consolidation process,
and not because of differences in the original
learning conditions. This is not a very realistic
assumption. We therefore investigated variations
in initial pattern strength, which can be seen as
reflecting the effects of arousal on memory.
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Figure 11. Results of the simulation of implicit memory.
Plotted is the enhancement in performance after an implicit
learning trial (priming effect), on top of base level perfor-
mance. The control-new pattern refers to a new unlearned
pattern receiving an implicit learning trial. Base level here
is random activity of the pattern nodes.



In TraceLink, variations in the strength of
acquisition result from the action of the modula-
tory system, which modulates learning in the link
system. High activation of this system results in a
higher learning rate in the link system, and thus
stronger connections between the nodes in the
link part of a pattern. Activation of the modula-
tory system does not change the learning rate in
the trace system. This choice was motivated by
parsimony, but there is also empirical evidence for
a lesser modulation of learning in the neocortex
compared to learning in the hippocampus.
Neuromodulators that enhance explicit memory,
for example, have no detectable influence on per-
formance in implicit memory tasks (Gold, 1995).

Simulation 9: The effect of arousal

We simulated the functioning of the modulatory
system by manually setting the learning rate in the
link layer to a higher value for some patterns, and
to a lower one for others. The learning rate in the
link layer varied with a continuous distribution
function around the link learning rate given in
Table 1. In the low variance simulation, the learn-
ing rate varied between 90% and 110% of that
value; in the high variance simulation it varied
between 50% and 150% of the generic rate. For
reasons of computational economy, 18 patterns

were learned in a simulation instead of the usual
15. The model was tested twice, once with a func-
tioning link layer, and once with a deactivated link
layer to investigate the effect of variance in pattern
strength on the Ribot gradient.

To summarise the influence of the variation in
strength, we did an analysis of variance on the
results of the simulation. We calculated the percent-
age of the variance in the results of the normal test
that was explained by two variables: the variations
in the learning rate, and the order in which the
patterns are learned (i.e., the age of a pattern at
test). When all patterns are learned with equal
strength (i.e., simulation 1), a large part of the
variance in the simulations is explained by whether
a pattern is learned recently or some time ago (see
Table 2). When patterns are not all equally strong,
however, much of the test variance is explained
by the variation in initial strength, and only little
by the order in which the patterns were learned.
This translates into a much flatter forgetting curve
(see Figure 12a, open triangles): Strongly learned
old patterns do not necessarily perform worse than
more recent but weaker patterns. The Ribot gradi-
ent, shown in Figure 12b, is not flatter but instead
slightly steeper when variance is introduced in the
strength of patterns.

In the high variance simulation, we divided the
patterns into strong ones, learned with an initial
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Table 2. Percentages of the variance in the results of the arousal simulations
explained by the age of a pattern (determined by the order in which patterns were
learned), the variance in the learning rate during initial acquisition, by the inter-
action between the two, and the remaining variance, shown under “error”

No variance Small variance Strong variance 
Variance explained by . . . in strengtha in strengthb in strengthc

“Age” of a pattern 38% 26% 6.5%
Strength of a pattern 8% 33%
Interaction between “age”

and strength 5% 6.5%
Error 62% 61% 54%

a Simulation in which there was no variance in learning rate (i.e., simulation 1).
b Simulation where learning rate during acquisition varied between 90% and 110% of

its standard value.
c Simulation where learning rate during acquisition varied between 50% and 150% of

its standard value.



strength between 120% and 150% of the normal
value, medium ones, learned with between
80–120% of the normal learning rate, and weak
patterns, with strength between 50% and 80% of
the normal learning rate (see Figure 12c and
Figure 12d). This showed that the strong patterns
were not only better recalled immediately after
learning, but that the effect persists for old pat-
terns. For the normal simulation, high initial
strength of patterns results in a long-term primacy
effect, in which the oldest patterns have an advan-
tage over less remote ones (see Figure 12c). This
effect is reminiscent of the primacy effect some-
times observed in remote memory. Sehulster

(1989) examined his memory for opera perfor-
mances in his 25 years as a season ticket holder,
and found a typical serial position curve with
recency and primacy effects: His memory was
best for the most recent ones, but it was also good
for the first seasons in which he held season tick-
ets. For the Ribot curve, in the high variance sim-
ulation it can be attributed almost completely to
the strong patterns (Figure 12d, filled triangles).
There was no Ribot gradient in the performance
of the weak patterns.

The results thus show that the variations in
strength had a prolonged influence on the retriev-
ability of the pattern. This is surprising, since only
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Figure 12. Results of the simulation of the effects of arousal on memory. (a) Contrast between results with strong variance
in learning rate and with no variance in the learning rate. (b) Same as panel (a) for the lesioned model. (c) Simulation with
strong variance in learning rate, with patterns subdivided into those learned either with a high, low, or medium learning
rate (strong � learned with 150% to 120% of the normal learning rate, middle � 80% to 120%, weak � 50% to 80%).
(d) Same as panel (c) for the lesioned model.



the initial strength of the link portion of the pat-
terns was varied, and this portion is unlearned rel-
atively fast. The explanation for this finding is that
strong patterns tend to monopolise consolidation
resources. If weak patterns are learned after a
strong one, the strong one tends to be the one that
is consolidated. Though the strong pattern is sub-
sequently unlearned in the link system, its trace
portion tends to become so strong that the pattern
remains a likely winner in the competition for
consolidation resources. We checked which pat-
terns were consolidated in the simulation with
high variance, and found that 85% of the consoli-
dated patterns were strong patterns, 14% medium
patterns, and only 1% consisted of weak patterns.
Through consolidation, the patterns with strong
connections in the link system thus also become
strong in the trace system.

TraceLink thus predicts that stronger patterns,
e.g., emotional ones, are consolidated more often,
and thus are forgotten more slowly than weaker,
e.g., nonemotional, patterns. Slower forgetting for
episodes learned under high arousal has indeed
been observed (Burke, Heuer, & Reisberg, 1992;
LaBar & Phelps, 1998). The finding that strong
patterns remain strong through more-than-
average consolidation may hint at the process
behind flashbulb memories, memories of gripping
events that years later seem to be remembered
with as much detail and clarity as on the first day
(R. Brown & Kulik, 1977). If consolidation indeed
works as a process in which patterns compete for
resources, then TraceLink predicts that strong pat-
terns will win this Darwinian competition and
that the difference between strong and weak
representations will grow with time.

GENERAL DISCUSSION

We have presented in this paper a model of nor-
mal memory and amnesia. The model is able to
simulate the normal forgetting curve, and several
forms of amnesia. It does so on the basis of a few
assumptions shared with many other models: (1)
that there is a consolidation process in long-term
memory; (2) that there is a hierarchy in the brain,

with a link system that helps retrieve patterns in
the trace system; (3) that some brain structures are
part of a modulatory system that influences link
plasticity, making it higher if the circumstances
suggest advantages to rapid new storage.

The consolidation assumption has been defen-
ded or used by many theoreticians. This prompted
Nadel and Moscovitch (1997) to call consolida-
tion theory the “Standard Model” of retrograde
amnesia. TraceLink comes close to the core of that
standard model, and thus has strong similarities
with other implementations of the theory. At least
two other models have explored consolidation in
the context of hippocampal–cortical interactions
(Alvarez & Squire, 1994; McClelland et al., 1995).
Moreover, our implementation of consolidation—
as the strengthening of attractors surfacing out of
noise—has been explored in several more theoret-
ical simulation studies (Ans & Rousset, 2000;
Robins, 1995; see Meeter, 2003a, for more discus-
sion of this work).

However, several features make TraceLink
stand out among other incarnations of consoli-
dation theory. TraceLink is the first model to
combine a study of amnesia with an automatic
consolidation process with random cueing of
remote memories. If consolidation indeed takes
place during rest or during certain sleep stages,
then consolidation must occur without outside
steering. McClelland et al. (1995) concentrated on
the consequences of consolidation for the neocor-
tical store, and thus did not implement how con-
solidation is steered in a neural network (instead,
an algorithm determined which pattern was con-
solidated). Consolidation was also not completely
autonomous in the model by Alvarez and Squire
(1994): A random hippocampal representation
was activated that then activated the neocortical
memory to consolidate. Moreover, the model of
Alvarez and Squire (1994) is very small: Just two
nonoverlapping memories are stored in the sys-
tem. This makes it impossible for that model to
carry out many of the simulations reported here.

Another novel element of TraceLink is the
inclusion of a modulatory system, which allows for
a better explanation for patterns of correlation
between anterograde and retrograde amnesia.
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Without it, the two forms of amnesia can only
correlate perfectly. Moreover, it allowed for the
exploration of the effect of arousal on consolida-
tion, and the discovery of the strong interaction
between memory strength and consolidation that
may explain the time course of the effect of emo-
tional content on memories.

The connectionist simulations themselves were
kept on a qualitative level: We did not attempt to
quantitatively fit concrete data sets. This is mainly
because the data in the neuropsychological litera-
ture are generally noisy due to the low numbers of
patients available for testing. This problem is fur-
ther aggravated by an understandable tendency
among neuropsychologists to focus on interesting
single cases. Instead of fitting concrete data sets, we
therefore tried to simulate the direction and shape
of some of the principal effects reported in the lit-
erature. We have also developed a mathematical
theory of learning, memory, and amnesia that is
more amenable to quantitative fits of noisy and dis-
torted data sets (Murre, Chessa, & Meeter, 2004).

The breadth of phenomena to which TraceLink
has been applied also sets it apart from other mod-
els. TraceLink shows how the “standard view” can
account for anterograde amnesia, correlational pat-
terns, shrinkage, intact implicit memory, and other
neuropsychologically relevant characteristics, while
remaining consistent with characteristics of normal
forgetting. Elsewhere, we show how the TraceLink
model without any modifications can also simulate
some of the principal characteristics of semantic
dementia (Meeter & Murre, 2004).

The simulations presented here and elsewhere
by no means prove that remote memories are con-
solidated to the neocortex, as there are at least two
cogent alternative explanations of the Ribot gra-
dient (Meeter & Murre, in press). However, the
simulations do show that consolidation offers a
coherent explanation for a wide variety of findings
in the neuropsychology of memory. Neither multi-
ple trace theory (Nadel & Moscovitch, 1997;
Nadel, Samsonovitch, Ryan, & Moscovitch, 2000)
nor what one could call the semantisation hypo-
thesis (Cermak, 1984; Meeter & Murre, in press;
Rosenbaum, Winocur, & Moscovitch, 2001) has
been worked out in much detail. Neither hypothesis

has been applied to anything more than the Ribot
gradient, and in the case of multiple-trace theory,
to semantic dementia (Moscovitch & Nadel,
1999). Until these theories are proven to be able to
account, for example, for shrinkage, isolated
anterograde and retrograde amnesia, and implicit
memory in amnesia, the current simulations give
consolidation theory one leg up.
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APPENDIX A

Implementation of the model

The model is based on binary, stochastic nodes that fire
synchronously. The thresholds of the nodes in a module are
controlled by an inhibition mechanism: Inhibition in a mod-
ule is diminished if too few nodes are active (i.e., less than a
target k) and increased if too many are. At each iteration,
a learning rule is applied to all connections after node acti-
vations have been updated. The details of these mechanisms
are described below. All simulations were done with the
Nutshell simulator (available free of charge via http://nutshell.
neuromod.org).

Activation rule

A node i has an activation ai that can take on either of
two values: 0 or 1. The probability that node i will “fire” (i.e.,
that its activation becomes 1) increases with its net input, as
follows:

(1)
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where neti is the total input activation to node i, or the
weighted input to node i minus inhibition:

(2)

where wij is the connection weight from node j to node i, aj is
the activation value of node j, and n is the number of nodes in
the model (if there is no connection between j and i, wij is zero
by default). Inhibition is discussed in the next paragraph. The
temperature parameter temp in Equation 1 controls the degree
of randomness of the nodes: If temp is near zero the nodes
behave as simple threshold devices; if temp is high the role of
the net input is limited and the node takes on values 0 or 1 ran-
domly. We used a temperature of 0.2 in all simulations.

Threshold control

Inhibition is constantly adjusted to ensure that the total num-
ber of activated nodes in a module (called A ) does not wander
too far from the target number k. Each module has its own k,
and inhibition control is separate for each module. To keep the
number of activated nodes at time t, At , as close as possible to
the target number k, two thresholds are constantly adapted.
Inhibition is the sum of a fast-changing threshold parameter T
multiplied by At , and a slow moving threshold � :

inhibition � TAt � � (3)

TAt , fast inhibition, may reflect the excitability of the basket
cells by the excitatory neurons. Slow inhibition, �, may reflect
the autonomous activity of inhibitory cells. Fast inhibition
reacts rapidly to a departure from equilibrium, and slow inhibi-
tion moves gradually to establish the equilibrium anew.

The control of T is straightforward: If At is higher than k, T
is increased (more inhibition); if At is lower it is decreased. In
particular, if At is larger than k, T is increased a lot; if At is only
a bit larger, T is increased a little:

if At � (1 � crit)k
T � T � �t

if At � (1 � crit)k
T � T � �t

(4)

neti � �

�

w a inhibitionij j

j

n

1

∑

where crit is the criterion for deciding whether At is much
larger or smaller, and �T is the change made to T (crit � 0.20,
and �T � 0.01). If At is only a little bit larger or smaller than k
(e.g., k � At � (1 � crit) * k), then one third of �T is added to or
subtracted from T. To prevent violent oscillations in activity, At

is a moving average. When A*t is the current level of activation,
the value used to compute both the level of inhibition TAt and
the change in T is:

At � 0.5At�1 � 0.5A*t (5)

This precedes calculation of the new value of T (Eq. 4).
The slow inhibition process aims to keep the “slow thresh-

old” � equal to TAt . When the equilibrium is disturbed, for
example, if the activation is diminished due to a lesion, � slowly
decreases to a new equilibrium value. The speed of this change
is determined by the parameter �� , which is chosen low
(0.001). The expression for calculating �t�1 at t � 1 is

�t�1 � (1 � ��)�t � ��TAt (6)

The amount of “fast” inhibition is bounded by a minimum
value T min and a maximum value T max. If T � T min it is set to
T min, and if T � T max it is set to T max. Similarly, � is also kept
between upper and lower bounds: if � � � min, � is � min; if
� � �max, � is �max. T min and �min were set to 0. T max and � max

were set to such high values that they were never reached in the
simulations.

Learning rule

The learning rule is a simple Hebbian rule that also allows
decreases in weight. The change in weight �wij on each time
step is equal to:

�wij � ��aiaj � ��ai (1 � aj), (7)

where �� and �� represent the learning rates. Both �� and ��

must be larger than 0. The weights wij are kept within the inter-
val [0, 1] by setting wi j � 1 if wij � 1, and wij � 0 if wij � 0.


