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Abstract. We explore a dual-network architecture with self-refreshing memory
(Ans and Rousset 1997) which overcomes catastrophic forgetting in sequential
learning tasks. Its principle is that new knowledge is learned along with an internally
generated activity re� ecting the network history. What mainly distinguishes this
model from others using pseudorehearsal in feedforward multilayer networks is a
reverberating process used for generating pseudoitems. This process, which tends to
go up to network attractors from random activation, is more suitable for capturing
optimally the deep structure of previously learned knowledge than a single feed-
forward pass of activity. The proposed mechanism for ‘transporting memory’
without loss of information between two different brain structures could be viewed
as a neurobiologically plausible means for consolidation in long-term memory.
Knowledge transfer is explored with regard to learning speed, ability to generalize
and vulnerability to network damages. We show that transfer is more ef� cient when
two related tasks are sequentially learned than when they are learned concurrently.
With a self-refreshing memory network knowledge can be saved for a long time and
therefore reused in subsequent acquisitions.

Keywords: sequential learning, catastrophic forgetting, self-refreshing memory,
pseudorehearsal, reverberating process, memory transport, long-term
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1. Introduction
Learning in distributed multilayer neural networks is most often achieved through 
a gradient descent adaptive algorithm, of which the most popular and widely used 
is the backpropagation procedure (Rumelhart et al. 1986). It is well known that
when gradient descent learning procedures are used in sequential learning tasks, a
major drawback, termed catastrophic forgetting (or catastrophic interference),
generally arises: when a network having previously learned a � rst set of items is
retrained on a second set of items, the newly learned information may completely
destroy the information learned about the � rst set (McCloskey and Cohen 1989,
Ratcliff 1990). Since this behaviour is unacceptable for models of human learning
and memory, a number of authors have explored several ways of reducing the
retroactive interference in sequential learning tasks (Hetherington and Seidenberg
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1989, McCloskey and Cohen 1989, Kortge 1990, Ratcliff 1990, Lewandowsky 1991,
1994, Murre 1992, French 1992, 1994, 1997, McRae and Hetherington 1993,
Lewandowsky and Li 1995, McClelland et al. 1995, Sharkey and Sharkey 1995,
Robins 1995, 1996a, Ans and Rousset 1997, Robins and McCallum 1998; for a
review, see French 1999).

The resolution of this problem constitutes a dif� cult task because the distributed
nature of represented information, essentially required within networks to achieve
generalization, seems to be incompatible with a weak interference level. In highly
distributed systems, knowledge representations about different learned items
extensively share the same connection weights. When a new set of items is learned,
the same connection weights, which were already adjusted for previously learned
items, will once more be modi� ed. This may completely abolish memory of old
information, resulting in the classical ‘sensitivity–stability dilemma’ (Hebb 1949) or
‘stability–plasticity dilemma’ (Grossberg 1987, Carpenter and Grossberg 1988).
Other memory models that use separate or sparse distributed representations face
this dilemma to a lesser extent (e.g. Hintzman 1986, Grossberg 1987, Kanerva 1988,
Krushke 1992, 1993, Ans et al. 1998). However, when a high level of generalization
is required in cognitive modelling, it is necessary to use a highly distributed system,
implying that the catastrophic forgetting problem should be solved.

Catastrophic interference can be eliminated in sequential learning by using a
rehearsal mechanism: the old information previously learned by a network is
continually refreshed (i.e. retrained) during the learning of new information. This
trivial solution, which requires permanent access to all events on which the network
was trained during its history, is unacceptable when it is seen as the only solution 
for the human brain. Indeed, humans have in general the ability to learn new events
without the complete abolition of memory for old events, events which do not occur
again systematically for their consolidation. Nevertheless, this potential solution
proves to be useful in the understanding of the attractive pseudorehearsal mecha-
nism, recently proposed by Robins (1995, 1996a), which works without recourse 
to old events for refreshing memory. To describe the basic principles of this
mechanism, consider a series of item sets which have to be learned sequentially 
(set A , next set B , next set C, . . . , etc.) by a feedforward multilayer network using 
a gradient descent learning algorithm. Each set contains a number (that can be
reduced to only one) of input–target items which have to be associated after
learning. Once the learning of the � rst set A of associative pairs is completed and
before the learning of the second set B starts, the network is stimulated by random
input patterns, each generating a corresponding output pattern. These input–output
pairs are successively stored in a pseudopopulation which is then considered as
having captured something re� ecting the set A structure. During the learning of 
the second set B , the network is concurrently trained on the input–output pairs
previously stored in the pseudopopulation. These last pairs are seen as pseudo-
associations re� ecting the old knowledge. Learning the second set is considered as
being completed when a learning criterion is reached for all set B input–output pairs
(the pseudo input–output are not subject to a learning criterion). The same process
applies again for the learning of the third set C: before learning set C a pseudo-
population has to be built up, hence capturing some representation of the A –B
structure, and then the new set is trained in conjunction with the refreshed A –B
pseudo-knowledge. The other sequentially learned new sets will then be processed
in the same way. This pseudorehearsal mechanism was applied to several sequential

B. Ans and S. Rousset2



tasks (Robins 1995, 1996a) in the framework of the standard backpropagation. 
The results showed a signi� cant decrease of retroactive interference compared 
with those obtained on the same tasks processed without the pseudorehearsal
mechanism.

This very promising approach inspired the authors (Ans and Rousset 1997). We
proposed a learning connectionist architecture, with a self-refreshing memory,
which overcomes catastrophic forgetting in an ef� cient way. Two basic questions
were addressed: (i) how the pseudopopulation notion can be neurally implemented
in the framework of a pure connectionist architecture; and (ii) how the deep
structure of the knowledge represented in the connection weights of a neural system
can be optimally captured. These two points were also addressed independently 
by Frean and Robins (1997), French (1997), Robins (1997a, b) and Robins and
McCallum (1998). This paper highlights the essential properties of the learning
connectionist architecture we propose for implementing self-refreshing memory,
then it explores some fundamental consequences of self-refreshing on knowledge
transfer in sequential learning tasks.

2. Reverberating networks with a self-refreshing memory: sequential learning
without catastrophic forgetting

2.1 A dual-network architecture
The neural network architecture proposed to overcome catastrophic interference
(Ans and Rousset 1997) consists of two coupled multilayer networks NET 1 and
NET 2 (see � gure 1). Within each network, as usual, an input layer is fully connected
to a hidden layer, which is itself fully connected to an output layer. In contrast, 
with classical feedforward networks the hidden layer is also fully connected to the
input layer. In the dual architecture, the NET 1 network can learn external (or
environmental) items, but also information issuing from NET 2, whereas the NET 2
network can learn information only from NET 1. Backpropagation is used in the
two networks. When NET 1 is presented with a given external input–target pair 
to learn, the error function to be minimized in the learning algorithm is based not
only on the error between the computed output and the output target, but also on
the error between the computed activation from hidden units to input units and the
external input pattern. The latter thus plays the role of a second desired target. In
this way, the connections from hidden units to output units implement hetero-
associations and those from hidden to input units implement autoassociations. The
same holds for the NET 2 network, which is also composed of hetero-associative
and auto-associative parts. It is noteworthy that the auto-associative part is always
required in the architecture, even when hetero-association is the focus of the task
under study.

A simple explanation of the basic functioning of the architecture, shown in 
� gure 1, would be to consider an initial state in which NET 1 has already learned
completely a given set of external associative items and NET 2 is still ‘empty’ (i.e.
with random connection weights). Assume that the neural system then enters in a
� rst processing procedure, denoted stage (I) (left part of � gure 1), in which NET 1 is
no longer receptive to external events but is continually ‘bombarded’, over its input
layer, by a random activation issuing from a noise generator. For a given occurring
random input ‘seed’, a � rst resulting activity is computed, via the NET 1 hidden
layer connectivity, on the output layer and on the input layer (the random seed 
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no longer having an effect on the input activity computation). This � rst resulting
input layer activity is then reinjected in the hidden layer, which creates a new 
output and input activity. This second input activity is reinjected in the hidden 
layer, hence recreating a third input–output activity, and so on. This back and forth
� ow of activity between the hidden and input layers is termed a ‘reverberating’
process. After a � xed number of reinjections (which is a simulation parameter,
denoted R) within the NET 1 auto-associative part, the current generated input 
and output activities are, respectively, transmitted to the NET 2 input and output
layers for training. The current NET 1 output plays the role of a pseudo hetero-
associative target for NET 2 and the current NET 1 input plays the role of both 
a pseudo input and a pseudo auto-associative target for NET 2. For each of 
the successive random input seeds, the corresponding pseudoitems generated by
reverberation within NET 1 are trained in NET 2. Stage (I) is in fact intended 
to ‘transport’ the previously learned information from NET 1 to NET 2. A second
processing procedure, denoted stage (II) (right part of � gure 1), is intended to allow
NET 1 to learn new external items. During this stage, NET 2 is ‘bombarded’ by 
the random generator and NET 1 becomes receptive again to external events it can
then learn. A new population of external items must be trained concurrently with
pseudoitems originating continuously from NET 2, these pseudoitems being
generated exactly as in NET 1 during stage (I). Subsequently, stages (I) and (II) are
supposed to work alternatively for each new occurring population of ‘actual’ items.
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Figure 1. The reverberating architecture with self-refreshing memory. Stage (I): the NET 2
network is learning pseudoitems generated by the reverberating process in NET 1 (transport
of NET 1 memory towards NET 2). Stage (II): the NET 1 network is learning external items
along with pseudoitems generated by the reverberating process in NET 2 (learning with
self-refreshing of old information).



In other words, new environmental knowledge is always learned in the � rst network
NET 1 along with internally generated information (from NET 2) supposed to
re� ect its own history. This self-refreshing of the neural system memory is basically
able to overcome catastrophic forgetting in sequential learning tasks.

The NET 2 network is in fact a connectionist implementation of the pseudo-
population notion proposed by Robins (1995). However, Robins (1997 a) suggested,
in order to avoid ‘storing’ pseudoitems in a pseudopopulation, using a single
network with two weights per connection. A fast weight is used for new learning and
a slow weight is involved for pseudoitem generation. The idea of using pseudoitems
to pass information between networks has explored recently and independently
(Ans and Rousset 1997, Frean and Robins 1997, French 1997, Robins, 1997b). 
The memory model proposed by French (1997) has several features in common 
with ours in so far as they both explicitly use a dual-network architecture in
simulations. In French’s model, one network area serves as a � nal storage area for
representations, the other is an early processing area where new representations are
� rst learned by the system. The � nal storage area continually supplies internally
generated pseudopatterns, which are approximations of its content, to the early 
processing area. There, they are interleaved with the new patterns to be learned. 
By using this model, an original explanation of category-speci� c semantic de� cits
was recently proposed (French and Mareschal 1998). However, what essentially 
distinguishes our approach from the latter, and also from the other papers cited
using pseudorehearsal in feedforward multilayer networks, is the introduction of 
a reverberating process for generating pseudoitems. This process, tending to go up
to network attractors, is more suitable for capturing optimally the deep structure 
of knowledge distributed within connection weights than a single feedforward 
pass of activity. It was shown (Ans and Rousset 1997) that for the same sequential
learning task, a high level of retroactive interference was present with pseudo-
rehearsal without the reverberating process, whereas this interference was
dramatically reduced when using the activity reinjection mechanism. It must be
noticed that pseudorehearsal was explored in the framework of Hop� eld-type nets
(Robins and McCallum 1998), where extra (or ‘spurious’) attractors created in state
space during learning are exploited for preserving a previously learned population.
The effects of these extra attractors in the speci� c dynamics of Hop� eld nets have
something in common with the role of the reverberating process used in the
framework of multilayer networks.

2.2. Simulations
Throughout this paper, the performances of the proposed reverberating
architecture will be explored using two pairs of populations of items. The � rst pair
de� nes a � rst condition for which the two populations are a priori mutually
‘compatible’. The second pair de� nes a second condition for which the two
populations are a priori mutually ‘incompatible’. This notion of compatibility is at
this point used with reference to common sense: ‘doing a related sort of task’. In 
the compatible condition, the � rst population is a set of items representing the
addition of two numbers; these two operands and their associated result are
expressed in decimal notation. The second population is a set of items representing
the same addition operation but with operands and results expressed this time 
in octal notation. For example, to the decimal add-item ‘07 + 46 = 53’, belonging to
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the � rst population, will correspond (for the same numerosity) the octal add-item
‘07+56=65’  in the second population. In the incompatible condition, the � rst
population is a set of items representing an operation, denoted max, for which the
two arguments are the same as those of the previous decimal addition, but with a
result unrelated to an addition operation. The max operator is de� ned as follows:
the � rst digit of the result is the greatest of the two � rst position digits belonging,
respectively, to the two operands, and the resulting second digit is the greatest 
of the two second position digits of the two operands. The second population of 
the incompatible condition is again the octal addition population. Taking the
previous example, the max-item ‘07 max 46=47’ will correspond to the octal add-
item ‘07+56=65’.

For the three populations considered, the operands and results are limited to
numbers with two digits. The two operands both lie between numerosity 1 and
numerosity 47. The associated result must be less than numerosity 64, because the
corresponding octal number has more than two digits from numerosity 64 (100 in
octal notation). For processing in the learning network, items will be presented 
in binary code: digits belonging to the same number will be coded separately, with 
a maximum of three bits per digit. For example, the decimal add-item ‘07+46=53’
will be binary coded in the following way: [(000) (111)] + [(100) (110)] = [(101)
(011)]. This 3-bit coding implies that operation items containing numbers with 
digits ‘8’ or ‘9’ have to be removed from the decimal addition and max operation
populations, as well as the corresponding items with the same numerosity in the
octal addition population. Finally, with all these constraints, each population
contains 916 operation items.

In order to highlight catastrophic forgetting in sequential learning tasks and 
show how the reverberating architecture overcomes this problem, two simulations
are performed. The � rst one in the compatible condition where the decimal addition
population (916 items), denoted Dec-Add, is learned � rst and a subset belonging to
the octal addition population is subsequently learned. This subset, denoted Oct-Add,
is composed of 229 items randomly chosen among the 916 items of the whole octal
population, the remaining items being reserved for achieving the generalization tests
in section 3. The second simulation is performed in the incompatible condition where,
after learning the max operation population (916 items), denoted Max-Op, the same
previous Oct-Add subset (229 items) is then learnt. Training a given operation item
(binary coded) by the � rst network NET 1 of the dual architecture is achieved by
presenting the two operands over its input layer and the result over its output layer.
It may happen that some items belonging to two populations processed in the same
condition contain the same operands but give rise to a different result (e.g. ‘5+7 = 12’
and ‘5+7 = 14’, respectively, for decimal and octal addition). To avoid these
‘ambiguities’, all operand pairs are systematically accompanied by an operator pattern
specifying the task: [10] and [01] coding, respectively, for the two distinct operations
represented by the two populations processed in the same condition. The same coding
[10] is used for both the Dec-Add and Max-Op operations since the simulations
performed on compatible and incompatible conditions are independent (only two,
never three, populations are processed in the same condition). The two networks have
14 input units for the two operands and the operator pattern, six output units for the
result and 40 hidden units.

For each of the two simulation conditions, we start from an initial state of 
the system in which NET 1 has already completely learn the � rst set of 916 items
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(Dec-Add or Max-Op population) and NET 2 is still empty. In stage (I), NET 2 is
trained on pseudoitems generated by NET 1 from random input seeds. When stage
(II) is at work, NET 1 is trained on the second population of 229 items (the Oct-Add
subset in the two conditions) concurrently with pseudoitems originating from 
NET 2, that is, with a self-refreshing of knowledge related to the previously learnt
population. In this learning process, actual and pseudoitems occur alternatively,
each of them inducing its corresponding weight modi� cation in the NET 1 network.
In this continuous � ow, each occurrence of an actual item (taken at random without
replacement) is systematically followed by N (a simulation parameter) occurrences
of pseudoitems generated on line from NET 2. It is noteworthy that this on-line 
� ow of one actual item for N pseudoitems, inducing a serial weight updating, 
does not require any training buffer. After a number of training cycles (one cycle
corresponding to a whole population presentation), learning the new population is
considered as complete when the following criterion is reached: the absolute value
of the difference between the computed activity of each input–output unit and the
corresponding component of the auto-hetero-associative target pattern has to be
less than or equal to 0.1. This criterion has to be satis� ed for all the items of the
actual population trained. With regard to the interleaved pseudoitems, a learning
criterion is of course irrelevant.

In all subsequent simulations, the number N of pseudoitems, alternating with 
one actual item during training NET 1, will be � xed to N=1. In the reverberating
process generating pseudoitems, the two networks use the same parameter R=5; 
this parameter was de� ned earlier as the number of activity reinjections within the
auto-associative part of one network before transmitting pseudoitems to the other
network. The noise generator produces binary inputs, though random real-valued
inputs should be suitable as well. In the backpropagation procedure, the error
function to minimize will be the cross-entropy function (Hinton 1989, Plaut et al.
1996) and the learning parameters will be 0.01 for the learning rate and 0.5 for the
momentum term. The bias term equals one and initial connection weights are taken
at random uniformly between –0.5 and 0.5.

Testing a given operation item consists of presenting to the NET 1 input layer the
item operand part (with its related operator pattern) and comparing the computed
hetero-associative output with the desired operation result (the auto-associative
part concerning operand memory will be not checked here). Any output pattern 
is considered as being correct if the following, rather rigorous, criterion is satis� ed:
the absolute value of the difference between each output unit activity and the
corresponding target component has to be less than or equal to 0.1. The correctness
of a set of items is evaluated from the percentage of correct items calculated over the
whole set. The simulation results plotted in � gure 2 represent recall performance
(per cent of correct items) of a previously learnt population (Dec-Add or Max-Op
populations) in the course of learning the new Oct-Add population. Performance 
is evaluated as a function of the number of training cycles of the new population, 
one cycle representing, as mentioned already, a whole population presentation. For 
each condition, recall performance of the previously learnt knowledge is plotted
with and without the self-refreshing memory process. Catastrophic forgetting can be
clearly observed when self-refreshing is not at work, especially when the two sequen-
tially learnt populations are incompatible. In contrast, when the self-refreshing
process works, the retroactive interference is dramatically reduced. In fact, recall
performance reaches its initial value (100% correct items) after an early falling
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performance corresponding to a network connectivity restructuring. This latter is
obviously more laborious in the incompatible condition.1

We attempted to run the same sequential learning tasks without the reverberating
process, i.e. taking R=0. The other parameters remained unchanged, in particular
we kept the same minimal value for the N parameter (N =1). As mentioned already,
it was shown (Ans and Rousset 1997) in another sequential learning example 
that when pseudoitems were generated from a single feedforward pass of activity,
recall performance of old knowledge fell down compared with the quasi perfect
recall obtained with the reverberating process at work. For the present tasks, a
catastrophic blocking of learning was in fact observed. That is, the NET 1 network
could not learn the second set of items (Oct-Add population) in the two conditions.
This problem originated from the fact that creating pseudoitems on the basis of a
single pass of activity from a random input pattern generates too much noisy
information in comparison with the reverberating process optimally extracting
cleaner knowledge structures.

Another important point must be emphasized and investigated: How many
learning iterations are required for a ‘good copy’ of knowledge structure from 
NET 1 to NET 2 during stage (I)? In fact, we opted for overlearning in order to 
have ideal conditions for reaching maximal performance. This also leads one to get
closer to the ‘weight-copying’ method which is commonly used by French (1997) for
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Figure 2. Recall performance (per cent of correct items) of a previously learnt population (old
population) as a function of the number of learning cycles of a new population. Graphs
originate from 100% performance (before the new population training starts) and stop when
the new population learning is completed. Left side: condition in which old (decimal
addition) and new (octal addition) knowledge are considered as compatible. Upper graph:
when the self-refreshing memory process is at work, perfect recall is reached rapidly after
a short restructuring phase. Lower graph: with no self-refreshing memory process,
substantial forgetting can be observed. Right side: condition in which old (max operation)
and new (octal addition) knowledge are considered as incompatible. Upper graph: with self-
refreshing, perfect recall is reached after a longer restructuring phase than in the compatible
case. Lower graph: with no self-refreshing, severe catastrophic forgetting immediately arises
at the beginning of learning of the new population.



transmitting new learning from an early processing area to a � nal storage area 
(note that the author also compares weight-copying with effective pseudopattern
transport). However, it is worth noting that with the reverberating process at work,
learning pseudoitems in NET 2 from NET 1 may be practically as fast as learning
actual external items in NET 1. This can be easily evidenced by simulation. The
initial training of the Dec-Add population by the empty NET 1 network was
compared with training, by the empty network NET 2, of the corresponding
pseudoitems generated by NET 1 after this latter had completely learnt the actual
items (at the 0.1 learning criterion). This comparison is shown in � gure 3, in which
recall performance of the Dec-Add population (checking, as above, hetero-
associative output patterns against desired responses at the 0.1 testing criterion) is
plotted for two cases, the � rst case as a function of the number of learning cycles in
NET 1 of actual decimal add-items, one cycle corresponding to the whole population
size, i.e. 916 items. The second case is plotted as a function of the number of
pseudoitems trained in NET 2, but with this number translated in cycles, one cycle
again corresponding to 916 pseudoitems, for enabling comparison with the � rst case.
In this example, it is clear that learning of actual items and pseudoitems has similar
dynamic pro� les and reach practically the same � nal accuracy. In short, knowledge
from one network is accurately transported to the second.

3. Knowledge transfer without catastrophic forgetting
In the framework of connectionist modelling, knowledge transfer between tasks 
has been studied through two main directions (cf. for a review, Pratt and Jennings
1996 and Robins 1996b). The former, referred to as ‘functional’ transfer (Silver 
and Mercer 1996), is based on concurrent learning. Different sets of items repre-
senting different knowledge domains are simultaneously trained from a tabula 
rasa (a network with random connection weights). The second approach, the
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corresponding pseudoitems originating from NET 1, showing how accurately knowledge in
the � rst network is transmitted towards the second.



‘representational’ transfer (Baxter 1996), involves sequential learning. This high-
lights the advantages of learning a task on the basis of a set of initial connection
weights built up during the previous learning of a related task. However, in this case,
due to the catastrophic forgetting, the new task learning may be only initially
oriented by previous learning: what a network already ‘knows’ cannot be generally
saved for a long time and hence cannot be reused in subsequent acquisitions. Even
if performance of a new task is improved when learning occurs after another related
task, what could we say about the real interest of such a result from the point of view
of human cognition since the related old knowledge is subsequently abolished?
Fortunately, as promising solutions for catastrophic interference are now available,
it will then be possible to study, in a more plausible and precise manner, the sequen-
tial transfer processes which are obviously of fundamental interest in cognitive
modelling, especially in modelling cognitive development.

In this paper, we simply highlight some fundamental consequences of learning
with self-refreshing with respect to knowledge transfer. Transfer will be explored
with regard to learning speed, ability to generalize and vulnerability to network
damages of the same target population according to whether the target population
is learned concurrently with another population, called the ‘context’ population, 
or after complete learning of this context population. The same examples as used
above will be used in the two conditions referring, respectively, to compatible and
incompatible knowledge between the context and target population of items.

3.1. Learning speed
Simulation results on learning speed are shown in � gure 4. Recall performance (per
cent of correct items at the 0.1 testing criterion) of the Oct-Add target population
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Figure 4. Recall performance of the same target population of items during its training according
to whether this population is learnt alone, after or concurrently with a context population.
(a, b) Sequential and concurrent learning, respectively, in the condition in which the context
and target populations are compatible. (c) Isolated learning of  the target population. (d, e)
Concurrent and sequential learning, respectively, in the incompatible condition. The closed
squares refer to the number of cycles required to reach the learning criterion for the target
population.



(229 items) is plotted as a function of the cycle number of its own training in 
� ve cases. The two graphs (a) and (b) show learning dynamics in the knowledge-
compatible condition for, respectively, sequential learning with self-refreshing
(denoted Dec-Add next Oct-Add) and concurrent learning (denoted Dec-Add and
Oct-Add). The two graphs (d) and (e) represent learning dynamics in the incompat-
ible condition for, respectively, concurrent (denoted Max-Op and Oct-Add) and
sequential (denoted Max-Op next Oct-Ad) learning. Graph (c) refers to the isolated
learning of the target population (denoted Oct-Add alone) from an empty network
(tabula rasa). Performance comparison is quite straightforward. In the compatible
condition, the fastest training is obtained for sequential learning followed by 
concurrent and isolated training. In the incompatible condition, the reverse pattern
occurs: isolated training of target knowledge is faster than concurrent training,
which is in turn faster than sequential learning.

3.2. Ability to generalize
With respect to the generalization of the target population ability, the same
simulations are considered except that what is now tested is the capacity of the
system to infer correct outputs in response to new inputs. That is, to produce correct
octal addition results in response to octal operands never presented to the learning
architecture. These operand pairs are chosen in the subset of 687 unlearnt items
remaining from the initially constructed set of 916 octal additions. Among these
octal items, we kept only 338 ‘completely new’ operand pairs with respect to both
the learnt target and context populations (this prevents any misleading general-
izations). Simulation results are shown in � gure 5 using the same learning cases and
notations as above. The percentage of correct octal addition, in response to the 338
new operand pairs, is plotted as a function of the cycle number of learning the Oct-
A d d population of 229 items. In these tests, the rigorous 0.1 testing criterion is used
to determine correct generalizations. It is clearly observed that, in the knowledge-
compatible condition, generalization performance of the target population is best
for sequential learning, followed by concurrent and isolated learning. In contrast, in
the incompatible condition, performance generalization of the isolated learned
knowledge is the best, followed by concurrent and sequential learning. As in � gure
4, the closed squares refer to the cycle when the 0.1 learning criterion is reached for
the target population. Moreover, learning is largely extended in order to emphasize
that performance hierarchy does not change during overlearning.

It could be argued that, during concurrent learning, four context items for one
target item are jointly trained (respectively, from 916 and 229 items), whereas
during sequential learning, only one pseudo-context item (N =1) for one target item
are jointly trained. To check that the observed difference of performance did not
originate from this asymmetry, the two sequential learning simulations were
performed again, this time taking N=4, i.e. taking four pseudo-context items for one
actual target item for learning in NET 1, in order to stand in an analogous situation
to that of concurrent learning. These simulations indicated that in the compatible
condition performance of sequential learning, N=1 and N=4 were quasi identical,
whereas in the incompatible condition a slight change was observed (increase of
performance with N=4), without altering the observed hierarchy between isolated,
concurrent and sequential learning.

As mentioned previously the Oct-Add target population is composed of 229 
items randomly chosen among a larger set of octal addition exemplars. It happens
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that this target population contains some items which are shared with the context
populations considered: the ‘shared items’ are the ones where the same operands
give the same result. Although in the set of the 338 new operands pairs used in
generalization tests there is no operand pair contained either in the learnt target
population or in the learned context population, one could argue that the presence
of shared items between the two learnt populations could distort the generalization
performances obtained above. In particular, in the compatible condition, one could
think that we place ourselves in a particularly favourable condition for generali-
zation, restricting suspiciously its signi� cance with regard to transfer. To verify that
it is not the case, we replicated the simulations, discarding in the context populations
the items shared with the Oct-Add population. As can be seen in � gure 6, these
simulation replicated the pattern of generalization performance observed previously
(� gure 5). This indicates that shared items are not at the root of the positive and
negative effects observed, respectively, in the compatible and incompatible condi-
tions. Compatibility between populations hence refers to the task they represent,
not to the fact they share or do not share some items.

3.3. Sensitivity to damages
We start from a state in which the target Oct-Add population has been learnt by an
intact architecture in each of the � ve previous training cases. The vulnerability of
the architecture after normal learning is simply explored by making 160 lesions
within the hidden layer of the NET 1 network, each consisting of removing � ve units
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Figure 5. Generalization performance of the same target population of items in the course of
its training according to whether this population is learnt alone, after or concurrently with
a context population. (a, b) Sequential and concurrent learning, respectively, in the condition
in which the context and target populations are compatible. (c) Isolated learning of the
target population. (d, e) Concurrent and sequential learning, respectively, in the
incompatible condition. The closed squares refer to the cycle when the learning criterion is
reached for the target population and thin lines refer to its overlearning.



at random. For each of these � ve-cell lesions, recall and generalization performance
of the learnt Oct-Add population are then checked in the � ve learning cases. Results
are given in table 1, in which recall and generalization performance are averaged
over the 160 lesioned networks. Recall performance is, as above, expressed as 
the percentage of correct output patterns in response to the 229 already learnt 
octal add-operands. Generalization performance is expressed as the percentage of
correct outputs in response to the 338 new octal add-operands. If the quantitative
differences are not dramatic, they can, however, re� ect important properties of each
type of learning. Their statistical signi� cance was evaluated using Student’s t-tests.
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Figure 6. Replication of the generalization simulations (� gure 5), only discarding in the context
populations the items shared with the target Oct-Add population. (a, b) Sequential and
concurrent learning, respectively, in the condition in which the context and target
populations are compatible. (c) Isolated learning of the target population. (d, e) Concurrent
and sequential learning, respectively, in the incompatible condition. The closed squares
refer to the cycle when the learning criterion is reached for the target population and thin
lines refer to its overlearning.

Table 1. Recall and generalization performance (per cent item correct at 0.1 testing criterion), 
averaged over 160 lesioned networks, checked on the same population B of items
previously learnt in an intact network according to several conditions.

Learning conditions
Compatible Isolated Incompatible

A  next B A and B B alone A  next B A and B

Recall 42.10 38.60 33.89 24.57 22.12

Generalization 38.25 32.62 24.18 16.37 15.99

B: Oct-Add target population.  A: context population (Dec-Add or Max-Op population,
respectively, in the compatible and incompatibl e learning conditions).  A next B: sequential
learning. A and B: concurrent learning. B alone: isolated learning.



� With respect to recall, in the compatible condition, sequential learning induces a
higher performance than concurrent learning (t(159)=3.45; p<0.001), which in
turn induces higher performance than isolated learning (t(159)=4.06; p<0.001). 
In the incompatible condition, isolated learning induces higher performance 
than the sequential one (t(159)=7.86; p<0.001), witch in turn surprisingly (with
respect to normal recall) induces better performance than the concurrent one
(t(159)=2.45; p<0.05).

� With respect to generalization, in the compatible condition, sequential learning
induces a higher performance than concurrent learning (t(159)=5.57; p<0.001),
which in turn induces higher performance than isolated learning (t(159)=8.78;
p<0.001). The pattern is less contrasted in the incompatible condition: isolated
learning induces better performance than sequential and concurrent ones
(respectively, t(159)=9.55; p<0.001 and t(159)=9.22; p<0.001); however, the latter
two do not differ (t(159)=0.44; p=0.65).

The meaning of the preceding analyses can be extended by the analysis of � gures 7
and 8, which give the percentage of lesioned networks producing a given percentage
of correct responses. It appears clearly that the preceding quantitative results re� ect
a general and uniform phenomenon that cannot be restricted to an isolated resistance
of some of the network sequentially trained. The higher resistance to damages
evidenced by sequential learning is hence not fortuitous. This lower vulnerability
constitutes one further aspect of the general superiority of sequential learning in the
compatible condition. Moreover, its general lower performance in the incompatible
condition is surprisingly reduced or even reversed in lesioned network simulations.

4. Conclusions
We have described a learning connectionist architecture which overcomes
catastrophic forgetting in sequential learning. Its basic principle lies in that new
knowledge has to be learnt along with an internally generated activity re� ecting the
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Figure 7. Percentage of lesioned networks (among 160) producing a given recall performance
(percentage of correct octal add-items) according to � ve conditions (see text).



network history, that is, self-refreshing of its memory. What essentially distinguishes
our approach from the other studies using pseudorehearsal in feedforward multi-
layer networks is the introduction of a reverberating process for generating
pseudoitems. This process, which tends to go up to network attractors, is more
suitable for capturing optimally the deep structure of old knowledge distributed
within connection weights than a single feedforward pass of activity. In the latter
case, catastrophic blocking of learning new knowledge can occur. The reverberating
mechanism, intervening between input and hidden network layers, always requires
an auto-associative part in the learning architecture even when hetero-associations
are the focus of simulated tasks. The utility of the activity reinjection process in
revealing the structure of learnt information has already be shown in connectionist
modelling of identi� cation (Rousset et al. 1988, Wang et al. 1989). In further
research, the self-refreshing memory model will be extended to pseudorehearsal of
ordered time-series which are stored by recurrent networks (e.g. Jordan 1986,
Elman 1990, Reiss and Taylor 1991, Ans et al. 1994).

An important point has to be clari� ed. One could think that the reverberating
process would converge close to network attractors, which might be systematically
previously learnt actual items. This would mean that the network auto-associative
part would in fact implement a sort of ‘clean-up’ circuitry. If this were the case, 
one could then argue that a space coverage problem could arise: pseudopatterns
would always be actual items and some of those could be systematically neglected
for more attractive ones. In this situation, the neglected items would never be trans-
mitted from one network to the other. We studied the generated pseudopatterns
and it was observed that they were mainly actual and new but ‘legal’ items, the 
latter being generalized items which satisfy the operation learnt by the network-
generating pseudoitems. There were also pseudopatterns which were new ‘illegal’
pseudo-associations not satisfying the learnt operation. It is thought that these
illegal pseudopatterns, representative of some input–output function captured 
by the network, are nevertheless suitable for accurate transport, towards the other
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Figure 8. Percentage of lesioned networks producing, in several conditions (see text), a given
generalization performance (percentage of correct output patterns in response to new octal
add-operands).



network, of the actual items previously learnt. This point is not easy to evidence
because, in the case of very structured information (as in the addition or max
operation), the majority of new generated pseudopatterns are generalized items
� tting the learnt operation. In order to make clearer the role of the illegal
pseudoitems, we performed the following simple simulation over the same dual
architecture, with the same parameters, but with other data. Twenty arbitrary
hetero-associations of binary coded patterns (a completely uns tructured domain)
were � rst completely learnt by the NET 1 network (the auto-associative and hetero-
associative parts were jointly learnt as above). A given hetero-associative item was
constituted by an input with 32 bits chosen at random and a desired output, also 
of 32 bits, taken at random. We also de� ned a distance between two patterns X and
Y of size Q as:

with d lying between 0 and 1. When the reverberating pseudopattern generation was
at work within NET 1, the pseudopatterns transiting from NET 1 to NET 2 were
� ltered: only those whose distance d was greater than 0.5 with each of the 20
previously learnt patterns were kept for training in NET 2 (the others being
discarded). Using this � ltering, 87.3% of pseudopatterns were discarded and NET 2
was in fact trained on only 12.7% of the generated pseudopatterns which were far
from the actual learnt patterns (0.5 is rather a high distance). In this situation, we
observed that NET 2 learnt perfectly, on the basis of very illegal items, the 20
arbitrary associations previously learnt in NET 1 . This result clearly indicates that,
even in the case of an essentially unstructured domain, the involvement of actual
learnt items in memory transport between the two networks is not a prerequisite.
Pseudoitems allow NET 2 to acquire some input–output function which has, in
particular, the essential property to � t accurately the actual items. If one wants to
consider the reverberating process as a clean-up mechanism, then one must keep in
mind that it is not simply a means for selecting old items but, above all, a way for
selecting an optimal approximation of the input–output function within the network
sending pseudopatterns.

Knowledge transfer was evaluated with regard to learning speed, ability to
generalize and vulnerability to network damages. We showed that for two related
tasks, knowledge transfer is more ef� cient when using sequential learning than
concurrent learning. This result was obtained in the framework of arithmetical
metaphors which were taken as representative examples of structured sets of items.
It is worth noting that the ef� ciency of sequential learning stems from the fact that
the self-refreshing memory process makes it possible to maintain previously learned
knowledge, hence improving transfer during subsequent learning of related tasks.
What a network (with self-refreshing memory) knows about something will be saved
for a long time and therefore possibly reused in subsequent acquisitions of other
things. This contrasts with sequential learning without pseudorehearsal, where old
knowledge is likely to be destroyed as a network is faced with new acquisitions. In
this case, since previously learnt knowledge is lost it cannot be obviously reused.

The coupled networks composing the proposed dual-network architecture do not
need to have the same structure (i.e. the same number of units in the same number
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of hidden layers) or to work with the same learning rule. Simulations supporting
these points have not been presented in this paper because they have already been
reported in studies performed in the framework of pseudorehearsal in feedforward
networks (Frean and Robins 1997, Robins 1997). When using a reverberating
architecture with one or two networks composed of several hidden layers, the only
additional feature to specify is that activity reinjections have to be carried out
between the input layer and the last hidden layer that is connected to the output.
The fact that the two coupled networks can work with different structures and
learning rules constitutes an essential point when relating pseudorehearsal to brain
processes. Indeed, knowledge transport which is carried from NET 1 to NET 2
underlies an original mechanism that would be able to ‘copy-paste memory’ between
two substantially different brain structures, even in the absence of the constituent
learning episodes of this memory. We shown that the use of the reverberating
process results in knowledge transport between networks with virtually no loss of
information, in particular with structured knowledge (see Ans and Rousset 1997 for
a study using unstructured knowledge). This preservation property is in fact
required for any memory model proposing a possible means for consolidation in
long-term memory.

In some respects the dual-system approach (Ans and Rousset 1997, French 1997)
goes in the same direction as that of McClelland et al. (1995), claiming, on the basis
of neurophysiological and neuropsychological data, that two complementary
learning systems are necessary for consolidation without catastrophic forgetting.
Pseudorehersal can constitute a neurobiologically plausible and ef� cient way to
transport information between the two systems, and then to maintain long-term
memory. Robins (1996a, Robins and McCallum, 1998) suggested that consolidation
of information in the neocortex may occur by means of pseudopatterns generated
during rapid eye movements (REM) sleep phases. In that regard, the similar
cerebral activation observed between learning of an arti� cial grammar and the
subsequent REM sleep phase (Maquet et al. 1998), can be viewed as congruent 
with Robins’s proposal. Further investigations using cerebral activation imagery are
thus likely to give reliable neurophysiological support to the pseudorehearsal
hypothesis.

The use of two separate networks to implement self-refreshing also opens new
horizons for exploring cognitive processes related to normal and pathological
forgetting. In particular, the dual nature of the memory model leads naturally 
to envisaging the behavioural consequences of lesioning connections from NET 1
towards NET 2, while keeping intact the ones going in the reverse direction. 
This will lead to preservation of the stage (II) process in the presence of a de� cient
stage (I) process. This asymmetric architectural damage would induce an antero-
grade amnesia behaviour since information learnt after lesioning can no longer be
transmitted to NET 2. Hence, post-damage learnt information will no longer be
refreshed during subsequent acquisitions of other information and will consequently
be lost due to the classical catastrophic interference. As a direct consequence of
pseudorehearsal, no severe retrograde amnesia should occur since information
learnt before lesions will continue to be refreshed, and hence will be maintained. This
general pattern still needs a detailed examination in forthcoming investigations. In
particular, the functioning of the two reverberating networks could give some
insights for explaining precisely the limited gradients of retrograde de� cit observed
in anterograde amnesic patients.
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Note
1. It was veri� ed that these catastrophic forgetting levels were not linked to operator coding or to the

presence of ambiguous items. On the one hand, pilot simulations were performed taking pattern
operators with varying sizes and structures. These simulations replicated the observed results. On the
other hand, it was also veri� ed that items belonging to two sequentially learnt populations,  but
composed of the same operands giving rise to a different result (the so-called ‘ambiguous’  items
discriminated by the operator pattern), do not have a major in� uence on the catastrophic forgetting
extent. Pilot simulations on sequential learning were performed with the same � rst population, but
with a second population in which ambiguous items, with respect to the � rst population,  were
discarded (the operator pattern, becoming unnecessary,  was also removed for the two populations).
The obtained results were closely similar to the ones depicted in � gure 2.
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